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A note of caution

Notice at the moment the abc-sde package is dependent on the Matlab
Statistics Toolbox (dependence “soon” to be removed).

Motivation

We want to enable inference for parameters of SDE models via approximate
Bayesian computation (ABC). The observational framework is quite general:
I one- or multi-dimensional SDEs;
I system states Xt ∈ Rd are observed with error;
I some states might be unobserved (partially observed system);{

dX t = µ(Xt, t, ψ)dt + σ(Xt, t, ψ)dW t

Y t = f (Xt, εt), εt ∼ π(εt|σε).
(1)

Define θ = (ψ, σε) as the vector of unknowns to be estimated (might
contain the initial state Xt0 as well). Data are discrete realisations y0, ..., yn of
{Yt}.

Methods

I We consider the “early–rejection” ABC-MCMC approach described in [1]:
basically when using a uniform 0/1 kernel for summary statistics
comparison, it is sometimes possible to avoid simulating from the model! In
some cases it reduces the computational time by 50-60%.

I Summary statistics are obtained using regression approaches, as in [2]:
implemented methods are mars (multivariate adaptive regression splines)
and lasso- type regularisation.

I Same as in [3], ABC tolerance δ is not chosen a-priori: a Markov chain is
created for δ and parameters draws are selected ex-post among those
corresponding to a “small enough” δ∗.

Early–rejection ABC-MCMC, see [1]

1. Initialization: choose or simulate θstart ∼ π(θ), simulate x start ∼ π(x|θstart) and y start ∼ π(y |x start, θstart).

Fix δstart > 0 and r = 0. Starting values are (θr, δr) ≡ (θstart, δstart) and S(y sim,r) ≡ S(y start) such that

K(|S(y start)− S(y)|/δstart) ≡ 1. Here K(·) is the uniform 0/1 kernel.

At (r + 1)th MCMC iteration:

2. generate (θ′, δ′) ∼ u(θ, δ|θr, δr) from its proposal distribution;

3. generate ω ∼ U(0, 1);

if

ω >
π(θ′)π(δ′)u(θr, δr|θ′, δ′)
π(θr)π(δr)u(θ′, δ′|θr, δr)

(= “ratio”)

then
(θr+1, δr+1, S(y sim,r+1)) := (θr, δr, S(y sim,r)); . (proposal rejected without simulating from the model)

else generate x ′ ∼ π(x|θ′) conditionally on the θ′ from step 2; generate y sim ∼ π(y |x ′, θ′) and calculate

S(y sim);

if K(|S(y sim)− S(y)|/δ′) = 0 then
(θr+1, δr+1, S(y sim,r+1)) := (θr, δr, S(y sim,r)) . (proposal rejected)

else if ω ≤ ratio then
(θr+1, δr+1, S(y sim,r+1)) := (θ′, δ′, S(y sim)) . (proposal accepted)

else
(θr+1, δr+1, S(y sim,r+1)) := (θr, δr, S(y sim,r)) . (proposal rejected)

end if
end if
4. increment r to r + 1 and go to step 2.

Main functions

I abc training: performs a “‘pilot” study to identify a region of the
parameters space on which the expected value of the approximate posterior
is likely to be, given a large number of simulated pairs of parameters from
an initial prior θ0 ∼ π0(θ) and synthetic data ysim conditionally on θ0.
From such datasets regression is performed to estimate E(θ|ysim) over many
simulated ysim, then from such sampling distribution for Ê(θ|ysim) a prior
π(θ) is deduced. π(θ) is the prior which will actually be used in the
ABC-MCMC.

I abc mcmc: “early–rejection” ABC-MCMC [1] using the prior deduced from
abc training. Notice abc mcmc also produces a chain for δ.

I abc posthoc: a graphical “post-hoc” determination of a “reasonable” δ∗

applied on the output of abc mcmc, same as in [3].

Some features of abc-sde

I Easy handling of fully and partially observed SDE systems;
I if no exact solution for the SDE in (1) is available, Euler-Maruyama

integration is automatically performed;
I adaptive MCMC (Haario et al. 2001) is used to advance the simulation;
I uses mars and lasso for summary statistics determination;
I two case studies are provided in the abc-sde Reference Manual.

A toy model: stochastic Lotka-Volterra

Two chemical “species” interact via some reactions (not reported here) and
the sizes Xt,1 and Xt,2 of the two “populations” at time t are simulated
exactly using the “Gillespie algorithm”. We add some Gaussian measurement
error and obtain data y0, y1, ..., y49, with yi ∈ R2

+. We approximate the true
underlying dynamics via a chemical Langevin equation:

dXt = Sh(Xt, c)dt +
√

Sdiag{h(Xt, c)}STdWt (2)

(c1, c2, c3) are unknown constant-rates for the (not reported) chemical
reactions, h(Xt, c) = (c1Xt,1, c2Xt,1Xt,2, c3Xt,2)T is the hazard function and S is
the stoichiometry matrix :

S =

(
1 −1 0
0 1 −1

)
.

By using available data y0, y1, ..., y49 incorporating Gaussian error with known
variance σ2

ε we wish to estimate the rates (c1, c2, c3) (see [1] for a way more
complex scenario).

Results 1

I The SDE is defined into lv sdefile.m. We choose diffuse priors coded
into lv prior.m for the ABC “pilot”: log c1 ∼ U(−3, 2),
log c2 ∼ U(−7, 0), log c3 ∼ U(−3, 2). From the pilot results we deduce
the following priors for the actual ABC-MCMC: log c1 ∼ N(−1.55, 0.42),
log c2 ∼ N(−6, 0.32), log c3 ∼ N(−1.45, 0.52).

I the ABC-MCMC runs for two million iterations. We use abc posthoc() to
study the posterior means variation with increasing δ:
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Figure: LV model: posterior means for varying bandwidth δ.

I we deduce that we should keep draws corresponding to δ < 0.25 as for
larger bandwidths posterior means vary markedly (particularly for log c1).

Results 2

We filter out draws corresponding to δ > 0.25 and use the remaining ones
for posterior inference.
We obtain the following posterior means:
I c1 : 0.44 [0.35,0.55], c2 0.0021 [0.0017, 0.0028], c3: 0.23 [0.17, 0.33]
I true values used to produce data are (c∗1, c

∗
2, c
∗
3) = (0.5, 0.0025, 0.3).

I a comparison between the true value of log c1, the kernel smoothing
estimate of the ABC posterior density for log c1, its Gaussian prior used
during the ABC-MCMC and the uniform prior used in the pilot:

−4 −3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure: Approximate posterior for log c1 (solid curve), Gaussian prior (dashed line) and uniform prior used

during the pilot. The vertical line corresponds to the true value of log c1.

Further possibilities

I It is straightforward to conduct inference for partially observed systems,
where only one coordinate is observed (Xt,1 or Xt,2);

I it is also possible to estimate σε as well as initial states (Xt0,1, Xt0,2).

See the abc-sde Reference Manual for further guidance. See [1] for a
4-dimensional SDE.
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