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Credits

The abc-sde toolbox has been conceived and coded by Umberto Picchini (Centre for Mathe-
matical Sciences, Lund University, Sweden), but for the notable exceptions listed below.
The creation of this software has been partially supported by the Faculty of Science at Lund
University, Sweden, under the grant “Money Tools” (verktygspengar) during years 2012–2013.

abc-sde includes the following software: (i) glmnet for Matlab [1] for a Lasso type regu-
larisation [2]; (ii) ARESLab [3] for an implementation of multivariate regression splines [4]. For
an example using exact simulation from the Lotka–Volterra model GillespieSSA [5] has been
used. The following utilities are available for processing the output produced by abc-sde: acf.m
(autocorrelation function) [6] and perctile.m (empirical percentiles) [7].

abc-sde is released under the GPLv3 license. If you have found it useful for your research
please give credit where credit is due:

Cite the paper
U. Picchini (2013). Inference for SDE models via approximate Bayesian computation.
arXiv:1204.5459.

Cite the software
U. Picchini (2013). abc-sde: a Matlab toolbox for approximate Bayesian computation
(ABC) in stochastic differential equation models, https://sourceforge.net/projects/
abc-sde/.

This program is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.
If not, see http://www.gnu.org/licenses/.
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Preface

As it is often the case the creation of a software, a package or a toolbox released for public
use, is motivated by the possibility to expand a set of files initially meant for its author private
use. The same circumstances led to the development of this first release of abc-sde1, which
has expanded out of a program developed to implement the methodology in [8]. The mentioned
reference is often cited in this guide, however results reported there have been obtained using
routines not exactly similar to those now available in abc-sde, and as such results in [8] are not
exactly replicable by this package.

The purpose of abc-sde is to make available some methods for conducting Bayesian inference
for parameters of models defined by stochastic differential equation (SDEs). However, since
inference for SDEs is notoriously complicated (not only in the Bayesian framework but also in the
“frequentist” one), particularly when dealing with multidimensional SDE systems, considering
the possibility of applying the flexible tools offered by approximate Bayesian computation (ABC)
(e.g. [9, 10]) comes naturally. Of course we are not claiming that ABC has to be considered the
inferential framework of choice, as the problem of conducting parameter estimation for SDEs has
generated a vast literature. However, when it comes to considering multidimensional systems,
with discretely observed measurements affected with error, or when the observations given the
latent states are not conditionally independent, it is very difficult and often computationally
demanding to conduct exact inference using conventional tools (e.g. likelihood maximization
or exact Bayesian inference). Therefore in some cases ABC can offer some relief to deal with
complex problems, even though the resulting inference is not exact (except under some extreme
conditions such as knowledge of sufficient summary statistics for the unknown parameters and
using a zero “tolerance” for statistics comparison).

abc-sde applies ABC to multidimensional (even partially observed) SDE models observed
with error by considering an MCMC algorithm, where simulations are accelerated using an “early
rejection” trick as described in [8] (although when specifying uniform priors for the ABC-MCMC
procedure, i.e. while running abc_mcmc, there might be no significant acceleration, see section 4
in [8]) and regression based methods are used to determine summary statistics, as suggested in
[11]. Also, the ABC tolerance can be chosen a-posteriori after the end of the MCMC simulation.
Two examples are illustrated in this guide and although I am aware that these are rather low-
dimensional compared to many applications of stochastic modelling, it has to be considered that:
(i) SDE modelling, because of its inferential complexity, is rarely considered beyond dimensions
of, say, order 5 (unless model simulation is the only requirement, instead of inference) and (ii)
for illustration purposes it is not feasible to consider high dimensional examples, as our aim is to

1In a sweep of intellectual inspiration the package was christened abc-sde to denote (hold your breath)
approximate Bayesian computation (ABC) for stochastic differential equations (SDEs).
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show the potential of the methodology while allowing algorithms to run smoothly on a common
pc. See for example [8] for an application considering a four-dimensional SDE.

Summary statistics for ABC are computed following a regression approach [11], using mul-
tivariate adaptive regression splines [4] or a lasso-type regularisation [2]. Regression splines is
enabled by interfacing abc-sde with ARESLab [3], and lasso with glmnet [1]. Both packages are
provided within abc-sde. However since the main purpose of abc-sde is ABC inference for SDEs
and not multivariate regression, we provide hard-coded defaults for ARESLab and glmnet, useful
for a typical usage (for example it is in principle possible to use the more general elastic-net
approach implemented in glmnet, which includes “ ‘lasso” and “ridge regression” as important
special cases). Users accustomed to nonlinear regression modelling might wish to customize
these defaults and in such case the functions to modify are:

abc_stats.m: modify input parameters to aresparams, aresbuild and cvglmnet;

abc_mcmc.m modify input parameters to arespredict and glmnetPredict.

For detailed information users are encouraged to read the documentation provided by the
original authors for ARESLab and glmnet, the former being available into \...\abc-sde\ARESLab
while for glmnet relevant references are provided at http://www-stat.stanford.edu/~tibs/
glmnet-matlab/.

Umberto Picchini
Lund, May 2013

umberto@maths.lth.se
www.maths.lth.se/matstat/staff/umberto/

7

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
http://www-stat.stanford.edu/~tibs/glmnet-matlab/
umberto@maths.lth.se
www.maths.lth.se/matstat/staff/umberto/


Introduction

We present abc-sde, a software implementing a Markov chain Monte Carlo (MCMC) algorithm
for approximate Bayesian computation (ABC) allowing inference for stochastic differential equa-
tion models. The reference for the relevant methodology is [8], please consult it for motivational
aspects, background and useful references. Important reviews on ABC methodology are [9, 10].

Goal of our work is to enable inference for parameters of stochastic models having la-
tent states expressed by a d-dimensional Itô stochastic differential equation (SDE). A time-
inhomogeneous SDE can be written as

dXt = µ(Xt, t, θ)dt+ σ(Xt, t, θ)dWt, Xt0 ∈ Rd, t ≥ t0 ≥ 0 (1)

where µ(·) : Rd × R+ × Rp → Rd is the drift of the SDE, σ(·) : Rd × R+ × Rp → Rd×m is the
diffusion of the SDE, and Wt is an m-dimensional process having m independent (standard)
Brownian motions.

We assume the availability of noisy observations: this means that data, sampled at n + 1
observational times 0 ≤ t0 < t1 · · · < tn, are not directly modelled via solutions to (1), but
instead some form of “error” is superimposed to the SDE solution. We do not consider a specific
interpretation for what such error actually is (see [12] for interesting implications of considering
the error as “model-error” or “measurement-error”).

A generic noisy measurement at sampling time ti is denoted with yi (≡ yti), where the latter
is a draw from some probability distribution underlying the following error–model

Yi = f(Xi, εi), i = 0, 1, ..., n; Yi ∈ Rdi , di ≤ d (2)

where f(·) is a known real-valued function and the εi are independent draws from a probability
distribution independent of Xi (≡ Xti). Therefore our data (sometimes denoted as “ ‘measure-
ments” or “observations”) is the sequence {yi}i=0,...,n. We will often consider the case where f(·)
induces an additive relationship, for example for scalar Yi

Yi = Xi + εi, i = 0, 1, ..., n (3)

where the εi are assumed i.i.d. Gaussian2 εi ∼ N(0, σ2ε) with εi independent of X0 and Wt.
Although this is a common setup in many practical situations we stress that in abc-sde we are
not forcing such assumptions on model (2), i.e. we do not need to assume (3) to hold, nor assume
Gaussian errors. It is possible to consider correlated errors and also measurements which are

2Here and in the following x ∼ N(a, b) denotes a scalar random variable x having Gaussian distribution with
mean a and variance b.
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not conditionally independent given the latent process Xt, see section 3.1.3. Therefore we are
not confined in the so called “state-space” modelling framework (also known as Hidden Markov
Model, see [13]), although this is an important topic which is studied in the two considered
applications.

The model object of study is{
dXt = µ(Xt, t, θ)dt+ σ(Xt, t, θ)dWt, Xt0 ∈ Rd

Yi = f(Xi, εi), εi ∼ π(εi;σε), i = 0, 1, ..., n.
(4)

where π(εi;σε) denotes the (known) distribution of the error term, depending on some (typically
unknown) variance components coded into σε.

Depending on the application scenario the initial state of the system X0 might be known and
set equal to a constant X0 = x0 otherwise we consider it as an unknown parameter. Similarly
the components of the distribution set on ε can be considered as unknowns. In next chapter
we establish some additional notation used in abc-sde and we anticipate that the vector of
unknown pararameters object of inference (typically including θ and which may also include
X0 and variance components) is denoted with theta. We also introduce a larger vector named
bigtheta containing all structural parameters involved in (4), that is also including known
constants. Of course theta is a subset of bigtheta and only components in theta will be
estimated via ABC-MCMC. A special remark is required for the parameter δ (see [8]), denoting
the tolerance/bandwidth for ABC, i.e. a bound to the acceptable discrepancy between summary
statistics computed on real data and synthetic data: although δ is considered unknown and it
has its own Markov chain automatically constructed in abc-sde, it should not be specified in
bigtheta nor in theta, see instead the section on ABC-MCMC-related parameters on page 17
and section 3.4.

Therefore object of the inference is theta, and the statistical framework of choice here is
Bayesian, thus we are interested in obtaining draws from some approximation of the posterior
distribution of theta given available data.

Depending on the experimental/sampling setup available for the problem at hand we can
have two types of observational schemes:

fully observed system
In this case the dimension of Yi at each sampling time ti is exactly d (same as the dimension
of process {Xt}), that is to say all coordinates of the system have been observed.

partially observed system
With “partially observed” we mean an experiment for which not all the d coordinates of
the multidimensional process {Xt} are observed at each sampling time ti. That is at time
ti the observed yi has dimension di ≤ d where di is the number of observed coordinates at
ti, see equation (2).

abc-sde is able to handle both scenarios: the fully observed case is considered in both examples
discussed in this guide (chapters 3 and 4) while the partially observed case is considered only
for the second example (section 4.5).
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Part I

abc-sde
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Chapter 1

Installation and limitations

1.1 Installation

Go to the abc-sde project webpage https://sourceforge.net/projects/abc-sde/ and down-
load the latest archive. Extract the archive in you preferred location then add it to the Matlab
search path together with all its subfolders: i.e. from the Matlab File Menu, select Set Path,
then choose Add with Subfolders then select the abc-sde folder. For a typical usage it is possible
to avoid loading the gillespiessa folder, which is only required to run the example in Chapter
4.

1.2 Limitations and dependencies

• This is an alpha-release of abc-sde. At this development stage, in order to avoid serious
issues related to delicate tasks such as random numbers generation, the present release de-
pends on the Matlab Statistics Toolbox. However such dependency simply requires
access to very few basic statistical functionalities, essentially pseudo-random number gen-
eration, pdf’s and cdf’s1. Therefore the dependency will be “soon” removed in next releases.
In the meantime users can substitute such functions with similar ones readily available on
the internet.

• abc-sde uses glmnet for Matlab [1] and ARESLab [3] to perform certain tasks. We
cannot provide support for glmnet and ARESLab in case of malfunction. Moreover here fol-
lows a remark from the glmnet authors as from http://www-stat.stanford.edu/~tibs/
glmnet-matlab/:

The distribution in the file glmnet_matlab.zip contains a dll for Windows XP
(tested with Matlab R13) and Windows Vista (tested with Matlab R14), a 64-bit
Linux version (tested with Matlab R2008b), and a 64-bit build of glmnet on Windows
XP (tested on Matlab R2009a and R2010a). We may add precompiled versions for
other platforms such as 32 bit Linux in the future. For now, users of those
platforms can easily compile the code themselves.

1This is the list of functions from the Matlab Statistics Toolbox which are accessed by abc-sde: mvnrnd,
normrnd, exppdf, normcdf, normpdf, unifrnd, randsample (used in glmnet).
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• abc-sde has been developed and tested with Matlab R2011a for Windows (32 and 64-bit
versions). Please let us know if you experience problems under different setups.

• the TO-DO.txt file gives a wish-list for some improvements.

• the LOG.txt file gives the list of changes.

• the development and maintenance of abc-sde is a one-man-effort. Also, it is an entirely
voluntary task, so please be patient if the author does not succeed in implementing new
features, fix bugs, expand the documentation etc. as rapidly as you (and we all) would
hope.
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Chapter 2

List of relevant variables

Here we list and describe all the relevant variables, structures etc. required for using abc-sde.
We divide them according to the framework where they operate. With “relevant” we mean those
variables that need to be created by the user and manually supplied to functions. Documen-
tation for non-user-supplied variables is hard-coded in the corresponding functions: type help
name_of_function at the prompt to read the documentation for function name_of_function.

SDE-related variables

sde_param a structure: it contains all the settings required to simulate a trajectory of the (ap-
proximated or exact) SDE solution. sde_param should always be constructed by respecting
the following scheme
sde_param = {bigtheta,problem,owntime,time,numdepvars,vrbl,integrator};

bigtheta an array containing all structural parameters required in system (4), i.e. θ, X0 and
components for the distribution of εt. Some of those may be known constants and others
unknown quantities. Notice the bandwidth/tolerance δ value should not be specified in
bigtheta, see instead the ABC-MCMC-related parameters on page 17 and section 3.4.

problem a user defined string identifying the name of the “problem” under consideration, e.g.
’theophylline’ (example in section 3.6), ’lv’ (chapter 4) etc. All file-names correspond-
ing to a given problem should start with myproblem_ where myproblem is the string defined
into problem: e.g. lv_sdefile.m, lv_prior.m etc.

owntime an array containing the time-grid for the numerical discretization of the SDE solution
(exact or approximated). If t0, t1, ..., tn are the measurement-times, then a possible choice
is owntime=[t0:h:tn] where t0 is t0, tn is tn and h is the stepsize for the chosen SDE
integration method. Of course h should be much smaller than mini |ti+1 − ti|.

time the sequence of sampling times, with or without repetitions. If vrbl (see below) is a
sequence of 1’s then the sampling times necessarily correspond to the only observed state
variable, thus time is the sequence {t0, t1, ..., tn}. If vrbl contains entries other than 1’s, for
example if vrbl = [1 2 1 2 1 2 1 2] then we are observing alternatively two different
variables and therefore time contains the corresponding sampling times, say time=[0 0
1.5 1.8 2 2 3 3.5], the first element (0) being the first sampling time for variable 1,
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the second one (0) the first sampling time for variable 2, the third one (1.5) the second
sampling time for variable 1 etc. Notice that different variables do not necessarily have to
be observed at the same sequence of sampling times.

numdepvars the dimension of the SDE, i.e. numdepvars must equal d, see eq. (1).

vrbl an array containing the (time-dependent) sequence of integers indexing the observed vari-
ables {yi}i=0,...,n; it has same length as time. For a 1-dimensional system (numdepvars =
1) we have vrbl=[1 1 1 ... 1]. For larger systems several patterns can be specified.
Some examples follow (this is a non-exhaustive list):

• numdepvars=2, time=[0, 0, .5, .5, 1, 1, 1.5, 1.5], vrbl=[1, 2, 1, 2, 1, 2,
1, 2] both variables of a 2-dimensional SDE have been observed at exactly the same
sequence of sampling times (fully observed system).

• numdepvars=2, time=[0, 0.5, 1, 1.5], vrbl=[1, 1, 1, 1] only the first variable
of a 2-dimensional SDE has been measured and its sampling times are all those
contained into time (partially observed system).

• numdepvars=2, time=[0, .5, 1, 1.5], vrbl=[2, 2, 2, 2] only the second vari-
able of a 2-dimensional SDE has been measured and its sampling times are all those
contained into time (partially observed system).

• numdepvars=3, time=[0, .5, .5, 1, 1.5, 1.5], vrbl=[1, 1, 3, 3, 1, 3], so we
have three state variables but only the first and third variable have been observed
(partially observed system). In this case we have observed the first variable at time
0 (but not the second nor third variable), then we have measured both the first and
third variable at time 0.5, then the third variable has been measured at time 1, then
both first and third variable have been measured at time 1.5.

yobs an array having the same length as time. It contains the (time-ordered) sequence of
observed data {yi}i=0,...,n; it must be consistent with the indices contained in vrbl. For
example if vrbl=[1 2 1 2] and yobs=[1.1 2.3 1.7 2.5] then 1.1 is the first observed
value of the first variable, 2.3 is the first observed value of the second variable, 1.7 is the
second observed value of the first variable etc.1

integrator a string declaring whether numerical integration of the SDE should be carried using
the Euler-Maruyama approximation (integrator=’em’) or exactly (integrator=’exact’).
In the former case it is necessary to specify an sde-file (e.g. lv_sdefile.m), in the latter
case the exact solution must be coded in a exact-solution-file (e.g. theophylline_exactsol.m).

1Technically yobs should not be listed in a section reserved to SDEs-related commands, as yobs is “raw data”
and not necessarily the output of an SDE simulation (and even if it has been produced from an SDE model, it
might incorporate “measurement error”). However there does not seem to exist a more suitable section where to
introduce yobs.
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Utilities for free/constant parameters

bigtheta_start an array containing starting values for bigtheta2. Some of those values may be
kept constant during the MCMC phase depending on the corresponding values in parmask,
see below. Notice starting values for the bandwidth/tolerance δ should not be specified in
bigtheta_start, see instead the ABC-MCMC-related parameters below and section 3.4.

parmask an array having the same length as bigtheta_start. It specifies which elements in
bigtheta_start (or more generally in bigtheta) have to be considered as constant and
which ones free-to-vary (i.e. to be estimated); a 0 is used to denote the constant ones (will
not vary during the ABC-MCMC procedure), whereas for those considered as unknown
and to be estimated a 1 is reserved.

parbase an array having the same length as bigtheta_start, it contains “baseline” values for
all parameters, therefore typically parbase=bigtheta_start (although this is not a rule).
During the MCMC procedure abc-sde automatically separate free-to-vary (unknown) pa-
rameter from those that are kept constant (thanks to the parmask vector). However when
abc-sde requires to re-construct the updated bigtheta array, containing the working val-
ues for free parameters (as produced by the MCMC proposal mechanism) in addition to
the constant ones then, for the latter, values specified in parbase are plugged in.

theta an array containing the current values of the unknown parameters. As such it has length
equal to the number of non-zero entries in parmask. It is specified by the user into “prior”
files (e.g. theophylline_prior.m) as only unknown parameters require a prior density.
Of course theta is a subset of bigtheta.

ABC-MCMC setup

The main function for ABC inference via MCMC is abc_mcmc.m which returns a matrix MCMCstates
having as many columns as the length of theta plus one (the additional one being the chain
for the ABC threshold/bandwidth δ) and a varying number of rows, depending on the settings
below.

R_mcmc the number of MCMC draws to be simulated. Not necessarily all R_mcmc draws are
returned by abc_mcmc.m or stored in the Matlab workspace, depending on the thin
value, see below.

thin the “thinning” factor, i.e. a non-negative integer j specifying whether the simulated chain
of length R_mcmc should be returned in its entirety or instead each jth simulated draw
should be returned. thin must be either 0 (no thinning, the full sequence of R_mcmc draws
is returned) or an integer strictly larger than 1. If a value thin > 1 is specified then
the matrix MCMCstates has floor(R_mcmc/thin) rows. If thin=0 then MCMCstates has
R_mcmc+1 rows (including the starting values for free-parameters).

2There is space here for a little confusion: the reader might argue why there is any need to specify starting
values for some quantities which are kept fixed (not estimated) during the MCMC phase. For fixed parameters
bigtheta_start provides values for such constants, see also parbase.
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step_rw the array of initial standard deviations for the Metropolis random walk updates; it
has length equal to the number of free parameters. Each entry in step_rw is used as the
standard deviation for the Gaussian proposal for the corresponding parameter during the
initial MCMC steps3. Afterwards, adaptive Metropolis random walk [14] kicks-in.

mean_bandw the mean value for the exponential distribution of the “bandwidth” δ (where δ is
the tolerance value for ABC).

bandw_start a starting value for the bandwidth δ, this is because in our approach a chain for
δ is constructed.

maxbandwidth an upper bound for the bandwidth δ. If no upper bound is desired, set maxbandwidth=inf.

numsimpar the number of simulated pairs of parameters/synthetic-data over which summary
statistics are obtained by regression.

trainitermax the number of repetitions of numsimpar simulations during the pilot procedure.

var_training an array having length equal to the number of free parameters. It is returned by
abc_training.m and its purpose is to assign appropriate weights to each free parameter4.

regrtype a string specifying the type of regression used to obtain summary statistics. It can
be regrtype=’mars’ or regrtype=’lasso’. If ’mars’ is specified then multivariate re-
gression splines [4] is employed as provided in ARESLab [3]. If ’lasso’ is specified then a
lasso-type regularisation is employed [2], as provided in glmnet [1].

maxbasis the maximum number of basis functions, to be specified only when regrtype=’mars’
is set.

3In the current implementation, when the number of free parameters is less than 15 fixed-step Metropolis
random walk using step_rw is run for the initial 300 ABC-MCMC draws before adaptive Metropolis random
walk start. Otherwise for a larger number of free parameters it is run for the initial 1000 ABC-MCMC draws

4var_training is the inverse of the diagonal of matrix A in [11, 8]. var_training can be set to be a vector
of 1’s if unknown parameters are supposed to have comparable sizes.
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Part II

Model–Setup and Examples
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This part of the guide describes how to set the mathematical and probabilistic features of the
model under investigation; then two simulation studies are presented. The first example consid-
ers a stochastic extension of a one-dimensional model often studied in pharmacokinetic/pharma-
codynamic (PK/PD) research. The second one is a two-dimensional stochastic predator–prey
model. In both cases synthetic data are considered.

Notice that approximate Bayesian computation (ABC) is not strictly necessary for conduct-
ing inference in the presented examples. Exact Bayesian inference can be carried-out for both
applications, for example using particle MCMC (pMCMC) [15] using the “adaptation” proposed
in [16]. ABC as a body of methods finds its raison d’être in the analysis of more challeng-
ing models. However the application of exact Bayesian methodology such as pMCMC in some
cases is computationally very demanding and therefore even for relatively simple models, such
as those considered here, ABC can still be useful (also, our “early–rejection” algorithm provide
an additional boost5 of 40-50% in terms of computational time compared to a naïve Metropolis
random walk version).

Although in the following sections guidance for coding practice is given, the reader is
encouraged to read through the “run” scripts (theophylline_run.m and lv_run.m) for the
two examples in order to understand e.g. how synthetic data are produced and how the most
common tasks can be accomplished.

Also, remember the limitations of the current release of the abc-sde toolbox, as from Chapter
1.

5However when specifying uniform priors for the ABC-MCMC procedure, i.e. while running abc_mcmc, there
might be no significant acceleration, see section 4 in [8].
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Chapter 3

General settings and a one-dimensional
example

3.1 Setting up the mathematical and probabilistic model

Here we describe how to define a model in separate files, each describing different features –
mathematical or probabilistic – of the model under study. The easiest approach is to consider
the files corresponding to implemented examples and use those as templates for custom models.
In this chapter we illustrate how to implement a one-dimensional model. See Chapter 4 for a
two-dimensional fully ad partially observed model.

Files pertaining the one-dimensional example are stored in the \...\abc-sde\theophylline
folder.

3.1.1 SDE model

Here we specify the functional shape of the dynamical model (1). Probabilistic features are
instead detailed in the prior file. Notice sections below on one/multidimensional SDEs illustrate
the case where we need to set files for an SDE model having unknown closed-form solution
(which is typically the case): when an exact solution is available, the creation of such files is not
necessary, go instead to section 3.2.2.

One-Dimensional SDEs

Copy the file theophylline_sdefile.m in your working directory and rename it into e.g.
mySDE_sdefile.m. Modify the code according to the following instructions (it is possible to
change the names of variables and parameters):

1. change the first line of mySDE_sdefile.m into

function [out1,out2] = mySDE_sdefile(t,x,flag,bigtheta)
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2. store all the parameters necessary to define the SDE (including its initial state) into the
bigtheta array, e.g.

X0 = bigtheta(1); % this is the mySDE initial condition X_0
p1 = bigtheta(2); % this is a model parameter for mySDE
p2 = bigtheta(3); % this is another model parameter for mySDE
...

It is up to the user to take care of the correct scale used to represent the parameters
stored in bigtheta. For example it is sometimes the case that their natural logarithms
are considered (e.g. in the “theophylline” example we have log_Ke in place of Ke), as
the MCMC proposals are based on Gaussian random walks and therefore a logarithmic
transformation is suitable for positive parameters. See next section on multidimensional
SDEs for a more explicit example.

3. define the driftX and the diffusionX part of the SDE into the appropriate slots (see the
Introduction for definitions of drift and diffusion);

4. check that the following two lines are present (it should be the case if the provided sde-files
are used as template)

out1 = driftX;
out2 = diffusionX;

5. insert the SDE initial condition: go to the bottom of the file and change the line
out2 = xzero; % write here the SDE initial value(s)
into
out2 = X0; % write here the mySDE initial value

Therefore, depending on the current time-value, mySDE_sdefile returns the current drift and
diffusion values (which will be automatically plugged in the Euler-Maruyama integration), or
the SDE initial value.

Multi-Dimensional SDEs

Here we assume familiarity with the previous section on one-dimensional SDEs. Suppose we
wish to consider the following model:

dXt = β(α−Xt)dt+ g · dWt, X0 = x0

where Xt = (X1
t , X

2
t )

T , α = (α1, α2)
T , Wt = (W 1

t ,W
2
t )

T , x0 = (x10, x
2
0)

T

β =

(
β11 β12
β21 β22

)
g =

(
σ1 0
0 σ2

)
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and T denotes transposition. Thus Xt is 2-dimensional, and this means that we have somewhere
specified numdepvars=2, e.g. before constructing the vector of settings for the SDE model
sde_param (see lv_run.m for an illustration). Suppose all values in x0, α, β and g are positive.

1. create the file mySDE_sdefile.m as previously described and make the modifications listed
below.

2. define the parameters (remember for this example we have assumed positive parameters,
therefore a log-transformation is recommended, see the remark in the one-dimensional
SDEs section):

log_x01 = bigtheta(1); % the log of mySDE's initial condition X_01
log_x02 = bigtheta(2); % the log of mySDE's initial condition X_02
log_alpha1 = bigtheta(3);
log_alpha2 = bigtheta(4);
...

3. In some cases we might want to separate the different components of the current state x
into

x1 = x(1);
x2 = x(2);

however this is not always necessary.

4. define the driftX and diffusionX components of the SDE, which are matrices. For
example here we have

beta = [exp(log_beta1) exp(log_beta2); exp(log_beta3) exp(log_beta4)];
alpha = [exp(log_alpha1) ; exp(log_alpha2)];
driftX = beta*(alpha−[x1;x2]);
diffusionX = [exp(log_sigma1) 0; 0 exp(log_sigma2)];

then copy such quantities into out1 and out2

out1 = driftX;
out2 = diffusionX;

5. at the bottom of mySDE_sdefile.m insert the SDE initial conditions into a row vector, e.g.
for a two-dimensional SDE with initial conditions x01 and x02 write:

out2 = [exp(log_x01) exp(log_x02)]; % the initial states x01 and x02

Of course when the initial states (x10, x20) – or any other known parameter – are considered
as positive known constants (i.e. do not need to be estimated) then, provided the corresponding
entries in parmask have been correctly set to 0, we can safely avoid transforming those to
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logarithmic scale as there will be no MCMC chain created for such parameters. Therefore in
this situation it is completely safe to specify above

x01 = bigtheta(1);
x02 = bigtheta(2);

and

out2 = [x01 x02];

Similar considerations apply to any parameter considered as fixed.

3.1.2 Prior files

Prior densities and sampling (simulation) from such densities are specified in “prior files”, e.g.
lv_prior.m. A prior file contains the setup for prior densities and pseudo-random numbers
generation, Prior densities are used during the ABC-MCMC phase, whereas pseudo-random
numbers from probability distributions are necessary for the ABC “pilot” and “training” phases
[11, 8].

If the pilot (which is an optional task) is performed then the corresponding prior densities
have to be specified at the end of the file, in the section clearly labelled as “pilot”, e.g. in
lv_prior.m we have

log_c1 = unifrnd(−3,2);
log_c2 = unifrnd(−7,0);

...

Instead the remaining sections of the file are reserved for (i) prior densities for MCMC and
(ii) simulation from the priors specified in (i). Again by looking for reference at lv_prior.m,
phase (i) is labelled as “MCMC phase” and we have

log_c1_prior = normpdf(theta(1),−1.55,0.4);
log_c2_prior = normpdf(theta(2),−6,0.3);
log_c3_prior = normpdf(theta(3),−1.45,0.5);

Therefore, for the MCMC phase we have specified Gaussian priors for each parameter to be esti-
mated1 (see Chapter 4 for a rationale). Then we may assume independence between parameters
and therefore the joint prior is the product of marginal priors, hence we write

out = log_c1_prior*log_c2_prior*log_c3_prior;

Finally, corresponding to (ii) we have instructions specific to the “training phase”

log_c1 = normrnd(−1.55,0.4);
log_c2 = normrnd(−6,0.3);

1In fact, as previously remarked, parameters in the theta array are unknown parameters object of our infer-
ence, as opposed to bigtheta, the latter containing all structural model parameters.
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log_c3 = normrnd(−1.45,0.5);

out = [log_c1,log_c2,log_c3];

Of course the objects specified for (i) and (ii) must be consistent one with the other (we do not
provide a tool for automatic checking).

3.1.3 Error-model

This section closes the list of files necessary to set the mathematical/statistical model. In the
“error-model file” we specify the probabilistic mechanism perturbing simulated values from the
SDE model with some form of “noise” (e.g. measurement error), same as in (2). As an example
assume that scalar data {yi}, collected at n+ 1 sampling times {t0, t1, ..., tn}, are modelled as

yi = Xi + εi, εi ∼ N(0, σ2ε), i = 0, ..., n (3.1)

that is data are the outcome of an additive relationship between a realization of the diffusion
process modelled via an SDE and measurement error ε (here assumed Gaussian homoscedastic).
However more general types of relations between {yi}, {Xi} and {εi} can be postulated in a
error-model file. Notice in particular we do not need to assume conditional independence of yi’s
given Xi, see the Introduction.

Examples are theophylline_errormodel.m and lv_errormodel.m. The content of such type
of file does not have a prescribed structure. It just needs to take as input the complete array
of model parameters bigtheta, the realization xhatpredict (i.e. {Xi}) of the SDE solution
extrapolated at sampling times {t0, .., tn} (this is all done automatically by abc-sde), and other
inputs which it’s not necessary to describe here. Therefore we simply need to describe the
functional relation between such quantities, for example

yobssim = xhatpredict + normrnd(0,sigmaepsilon*ones(length(xhatpredict),1));

The line above implements model (3.1) for scalar yi’s for each i = 0, 1, ..., n.

3.2 Optional files

For a given problem, the creation of files described in this section is optional. In section 3.2.1
we discuss how to consider “admissible” trajectories, while in section 3.2.2 we illustrate how to
implement the exact solution for a given SDE model.

3.2.1 Admissible trajectories

A fundamental step in an approximate Bayesian computation (ABC) algorithm is to generate
parameters from prior distributions, then conditionally on such draws observations from the
postulated model are simulated and then summary statistics are obtained on such simulated data
([9], [10]). However it is sometimes the case that for a given simulation of unknown parameters
from vague priors, numerical infelicities may occur in the corresponding generated trajectory
from the SDE model: e.g. negative trajectories for states which should be non-negative (e.g.
time-course of concentrations), inadmissible values (NaN, inf) or complex values. Of course in
some cases such problems can be alleviated when informative priors are used, however most
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often we do not have enough confidence in our prior knowledge and a qualitative study of the a-
priori model behaviour might be impractical. However such issues are not of immediate concern
for the MCMC phase of ABC, as the Metropolis-Hastings acceptance/rejection mechanism will
automatically reject parameters producing the situations above. What is instead problematic
is how to deal with the creation of summary statistics which takes place prior to MCMC start,
as abc-sde consider regression-based methods where the simulated parameters are regressed
against the corresponding trajectories, and of course computations cannot be carried out if
inadmissible values have been generated. We can therefore specify an “admissible-trajectories-
file”: if such file is created (again, this is optional) abc-sde will keep simulating parameters
during the pilot and training phases (not MCMC!) until some criteria are met. Such criteria are
specified by the user. In the end the abc_training output will only contain those parameters
corresponding to “admissible trajectories”.

For example the file theophylline_admisstraj.m takes as argument the SDE trajectory
generated by the current vector of parameters at a given iteration of the pilot procedure:

function ok = theophylline_admisstraj(xhat)

ok = 1;

% we consider as "unwanted" trajectories all those having at least a NaN,
% inf, complex or negative value
if ~isreal(xhat) || any(isnan(xhat(:))) || any(isinf(xhat(:))) || any(xhat(:) < 0)

ok = 0;
end

The function returns a value ok which can be 1 or 0. If it’s 0 then at least a non-real value
in the trajectory has been detected, or a NaN, inf or negative value. Since the modelled data
represent non-negative concentrations we only desire to work with parameters producing non-
negative trajectories. Therefore in general the user can set its own specific criteria in such file:
the only requirement is that the ok value should return a 1 (all went fine) or a zero (something
got wrong).

Remember: such file is not invoked during the MCMC phase, therefore the posterior inference
we obtain from running abc_mcmc is perfectly legitimate as “inadmissible” trajectories will be
automatically rejected by the Metropolis-Hastings ratio, as motivated above. Therefore the
MCMC phase will not be conditioned on what is specified in the admissible-trajectories-file.
Of course summary statistics are instead computed conditional to restrictions placed in the
admissible-trajectory-file.

3.2.2 Exact solution of SDEs

Whenever the explicit solution to an SDE is known this should be coded in an “exact-solution-
file”, see e.g. theophylline_exactsol.m. Provided such file has been created, exact integration
can be carried out by writing

integrator = 'exact';
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in your “run” script file, see e.g. theophylline_run.m. Otherwise using integrator = ’em’ the
Euler-Maruyama approximation is employed. Notice that whenever the exact integrator is used
there is no need to create an sde-file (e.g. theophylline_sdefile.m), the latter being necessary
when Euler-Maruyama is adopted. Now, since an SDE has rarely a solution available in closed-
form, there is no recipe for writing an exact-solution-file. See theophylline_exactsol.m for
an example of coding the (available) exact solution for the theophylline example. The function
must return an array having length length(owntime) if the SDE is one-dimensional, or a matrix
having size length(owntime)× numdepvars, where numdepvars is the dimension d of the SDE,
see the notation in the Introduction.

3.3 Working with external data and data-format conventions

Should data be loaded from an external source, this is of course possible and here we provide some
recommendation on how the data should be arranged. For examples see the ASCII tab-delimited
data_full.dat and data_partial.dat files into \...\Lotka-Volterra; see also section 2 for
variables definitions and section 4.5. If data are stored into a single file, then these must be
arranged in three columns: one column must contain the sampling times time sorted in non-
decreasing order (repeated values might be present, if more than one variable is being observed),
another column is reserved for the corresponding measured values from the dynamical process
being observed (yobs) and finally there should exist a column for the numerical labels identifying
the state variables (vrbl). Arrays time, yobs and vrbl must have the same length.

3.4 Choosing the tolerance

The tolerance/bandwidth δ is a fundamental building-block for inference via ABC, see [8]. In our
toolbox δ is considered as an unknown parameter, and as such it has its own prior distribution
and a dedicated MCMC trajectory is built, following [17]. A starting value bandw_start for δ
must be supplied to the abc_mcmc function then, considering that we always assume δ to have
an exponential distribution with mean λ, we also need to specify a value for λ via mean_bandw;
proposals for δ are then automatically generated by abc-sde2. Also, an upper bound for δ must
be set via maxbandwidth; this way no proposed δ will exceed such bound (it is also possible to
set maxbandwidth=inf if no explicit bound is required).

Ideally mean_bandw should be such that small values for δ are proposed, while at the same
time keeping the acceptance rate at reasonable levels. In MCMC for ABC we are not aware of
optimality results regarding suitable acceptance rates, however these should be not “too large”
otherwise the prior distribution is targeted instead of the posterior! Also notice the warning box
below.

In some case setting a low value for maxbandwidth might produce a long series of rejected
proposals. As such the chain might get stuck for long iterations in the same point. Although to
some extent this is an expected behaviour in ABC, our implementation of the adaptive MCMC
scheme proposed in [14] might “fail”, in the sense that the dynamically updated covariance matrix

2More in detail: a generic proposal is generated for log δ using Metropolis random walk with N(0, λ2) incre-
ments, then the generated value is reverted to the δ scale.
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for generating the increments in the proposed values, after many rejections would contain very
small values. Therefore the chain keeps being stuck in a pathological way. If this happens (it
is detectable by noticing decreasing acceptance rates printed on the computer screen during the
MCMC simulation) maxbandwidth and/or mean_bandw should be enlarged.

3.5 Example: theophylline drug pharmacokinetic

This first example considers the theophylline drug pharmacokinetic, which has often been stud-
ied in literature devoted to longitudinal data with random parameters (mixed–effects mod-
els), see [18, 19], [8] and references therein. Files implementing this example are stored in the
\...\abc-sde\theophylline folder.

By denoting with Xt the level of drug concentration at time t in a subject, after receiving
orally a Dose of drug, we modellize the drug kinetic via the following SDE:

dXt =

(
Dose ·Ka ·Ke

Cl
e−Kat −KeXt

)
dt+ σdWt. (3.2)

This example is fully discussed in [8] and the interested reader is redirected there for further
details. Synthetic data are generated following the setup described hereafter. We consider nine
sampling times ti’s at 15 min, 30 min, 1, 2, 3.5, 5, 7, 9 and 12 hrs after dosing, same as in [18, 19].
Since an exact solution to (3.2) can be obtained (see [20]), a single trajectory is simulated on a
time grid (owntime) built by placing 50 artificial linearly spaced points between and including
ti and ti+1. Finally, the generated values are perturbed with measurement error according to
the additive error-model yi = Xi + εi with εi ∼ N(0, σ2ε) i.i.d., i = 1, ..., 9. For data generation
we used

(logKe, logKa, logCl, log σ, log σε) = (−2.52, 0.40,−3.22, log
√
0.2, log

√
0.1).

At time t0 = 0 the drug is administered and therefore at t0 the drug concentration in blood is
zero, i.e. X0 = x0 = 0; thus it’s reasonable to assume the SDE initial state to be known and
as such will not be estimated. Parameters of interest are (Ke,Ka, Cl, σ, σε) however in practice
to prevent the parameters from taking unrealistic negative values their natural logarithm is
considered, thus we set theta = (logKe, logKa, logCl, log σ, log σε). Dose is assumed known
and equal to 4 [mg/KgBW]. In one case σε will be considered known and in such case it will be
theta = (logKe, logKa, logCl, log σ).

3.6 Results

ABC inference for model (3.2) with noisy measurements yi = Xi + εi has been performed by
using nine data points as obtained from theophylline_run. Data have been generated by
setting (logKe, logKa, logCl, log σ, log σε) = (−2.52, 0.40,−3.22, log

√
0.2, log

√
0.1).
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3.6.1 Identification of a “training” region (optional)

We first consider performing inference for the case where σε is known and equal to
√
0.1. Notice

that in order to exclude some parameters from the estimation process we can simply put a 0 in
the corresponding parmask entry, that is in this case we write

parmask = [0, 1, 1, 1, 1, 0];

corresponding to parameters listed in the following order: X0, logKe, logKa, logCl, log σ,
log σε, and where parmask contains flags for unknown parameters to be estimated (1) and for
parameters assumed to be known and fixed (0).

ABC summary statistics are determined by simulating a large number of parameters and syn-
thetic data from some prior distribution. It is therefore important to first identify an appropriate
support over which to place our prior. Such identification procedure is named “pilot”, but it is
not strictly necessary if a reasonable region is already known (e.g. from previous experiments).

Notice that the pilot procedure is potentially time consuming, depending if the SDE
model has a closed form solution or requires numerical integration and whether the number
of observations is large. Timing is particularly affected by settings in the “admisstraj” file
(theophylline_admisstraj.m in this example). However in this specific case it is not an issue.

We initially specify a diffuse but proper prior π0(theta) and by using a pilot we aim at
identify subsets of the real line on which to place most of the mass for each individual prior
π(thetaj) that will actually be used during the MCMC phase. Notice the different notation
employed for different priors: π0(·) corresponds to the prior used in the pilot, while π(·) is used
in the MCMC phase.

We choose uniform initial priors π0(θ): logKe ∼ U(−4.5,−1.2), logKa ∼ U(−1.2, 1.4),
logCl ∼ U(−5.3,−1.6), log σ ∼ U(−2.3, 0.4). Since the pilot procedure aims at drawing samples
from π0(θ), we set the appropriate commands into theophylline_prior.m (bottom lines, in the
section named “pilot stage”) as

log_Ke = unifrnd(−4.5,−1.2);
log_Ka = unifrnd(−1.2,1.4);
log_Cl = unifrnd(−5.3,−1.6);
log_sigma = unifrnd(−2.3,0.4);

The pilot is started by invoking abc_training.m and here we use multivariate adaptive re-
gression splines for the determination of summary statistics, regrtype=’mars’ (see theophylline_run.m
for the detailed setup)

[training,var_training] = abc_training(trainitermax,numsimpar,sde_param,...
parmask,parbase,regrtype);

This returns a matrix training whose columns should be explored using e.g. graphical tools
like histograms (or ksdensity() or normfit() etc., if the Statistics Toolbox is available). If
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we specify trainiter=100 we get a 100 x 4 matrix whose columns have the sample distributions
shown in Figure 3.1. Using such information we decide to impose the following priors π(theta)
which will be used for ABC-MCMC: logKe ∼ N(−2.5, 0.8), logKa ∼ N(0.18, 0.72), logCl ∼
N(−4, 0.9), log σ ∼ N(−1, 0.232). Of course the histograms in Figure 3.1 are hardly Gaussian,
however a pilot simply indicate the location over which to place most of the probability mass
of the prior distribution we simulate synthetic-data/parameters from during summary statistics
construction. The second output from abc_training.m is the array var_training which we
can plug directly into the main ABC function abc_mcmc.m described in next section3.
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Figure 3.1: Theophylline model with know measurement error: sampling distributions of logKe, logKa, logCl
and log σ from the pilot procedure.

It is important to recognize that a pilot as implemented in abc_training (and as discussed in
[8]) can only provide some indication of where the expected value for the approximated posterior
is likely to be, not the support for the approximated posterior distribution itself. As such the
regions we deduce from the pilot have to be considered “with a grain of salt”. In [11] it is
suggested to consider as a pilot a first round of ABC-MCMC: of course this approach would be
more reliable, but for the considered class of models it is difficult to imagine how to obtain the
summary statistics necessary to run such a preliminary ABC analysis.

3var_training is used to build the matrix of weights denoted with A in [8]. See also its definition in section
2.
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During the pilot the working training matrix is automatically and periodically saved (at
each completed trainitermax iteration) with .mat format into the working directory, with
names such as training_lasso_temp or training_mars_temp depending on the setting provided
for the regrtype parameter. At the end of all the trainitermax simulations, the resulting
training matrix is saved with names such as training_lasso_final or training_mars_final;
var_training is also saved as var_training_lasso or var_training_mars. In this version of
abc-sde we are not providing a mechanism to prevent such files to be created: the user might
want to comment-out the appropriate lines towards the end of the abc_training.m file.

3.6.2 ABC–MCMC

We use the means from the Gaussian priors determined in section 3.6.1 as starting values for
(logKe, logKa, logCl, log σ) for the MCMC phase. We store such values into bigtheta_start,
together with constant parameters (again in the following order: X0, logKe, logKa, logCl,
log σ, log σε):

bigtheta_start = [0, −2.5, 0.2, −4, −1, −1.15];
parmask = [0, 1, 1, 1, 1, 0 ];
parbase = bigtheta_start;
sde_param{1} = bigtheta_start;

For parameters assumed to be known their starting values are used throughout the simulations,
therefore we deduce that in this initial example X0 is not estimated and is set equal to 0; also
log σε is not estimated and is set equal to −1.15 (which is also its true value).

Before running the MCMC we first need to modify the theophylline_prior function in
order to plug the priors π(theta). The appropriate modifications should be performed in two
sections: (i) specify prior densities used in MCMC and (ii) drawing/sampling from such densities.
In theophylline_prior case (i) is denoted with “MCMC phase” while case (ii) with “Training
phase”.

[...]

%::: MCMC PHASE: SPECIFY HERE PRIOR DENSITIES
log_Ke_prior = normpdf(theta(1),−2.5,0.8);
log_Ka_prior = normpdf(theta(2),0.18,0.7);
log_Cl_prior = normpdf(theta(3),−4,0.9);
log_sigma_prior = normpdf(theta(4),−1,0.23);

out = log_Ke_prior*log_Ka_prior*log_Cl_prior*log_sigma_prior;

[...]

%::: TRAINING PHASE: SPECIFY HERE SAMPLING FROM PRIORS USED IN MCMC

log_Ke = normrnd(−2.5,0.8);
log_Ka = normrnd(0.18,0.7);
log_Cl = normrnd(−4,0.9);
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log_sigma = normrnd(−1,0.23);

out = [log_Ke,log_Ka,log_Cl,log_sigma];

We set a maximum value for the bandwidth maxbandwidth = 1.2, which has been set by
trial-and-error. Also we set mean_bandw = 0.6 and bandw_start = 0.6.

integrator = 'exact'; % can be "EM" (Euler−Maruyama) or "exact"
R_mcmc = 2000000; % number of MCMC draws
step_rw = [0.55,0.2,0.7,0.22]; % starting SD for Metropolis random walk
mean_bandw = 0.6; % bandwidth mean value
bandw_start = 0.6; % starting bandwidth value
maxbandwidth = 1.2; % upper bound for the bandwidth
numsimpar = 30*length(sampletime); % number of simulated datasets

% for computing summary statistics
thin = 50; % the "thinning" value
maxbasis = 50; % max number of basis for MARS
regrtype = 'mars'; % can be "lasso" or "mars"

We run abc_mcmc.m for R_mcmc = 2000000 with the settings above (however see theophylline_run.m
for full details), including var_training=[0.8446,0.5359,1.0270,0.5762] obtained in section
3.6.1.

MCMCstates = abc_mcmc(yobs,sde_param,R_mcmc,step_rw,mean_bandw,bandw_start,...
var_training,numsimpar,maxbandwidth,thin,parmask,parbase,...
regrtype,maxbasis);

We obtained an average acceptance rate of about 11% during the simulation, which was com-
pleted in about 75 minutes4. The resulting matrix MCMCstates contains in its first 4 columns
the (thinned) ABC-MCMC draws for (logKe, logKa, logCl, log σ) and in the last (fifth) column
the chain for the bandwidth δ.

Depending on user’s requirements, obtained draws could then be exported and treated using
advanced diagnostic tools5 which are not available in abc-sde.

During ABC-MCMC the matrix containing the created chains is automatically and periodi-
cally saved (every 1% of the total run) with .mat format into the working directory, with names
such as mcmcstates_lasso_temp or mcmcstates_mars_temp depending on the setting provided
for the regrtype parameter. This way a relatively recent version of the produced chain is avail-
able for safety reasons or to allow the exploration of partial results by opening another instance
of Matlab or another software. At the end of all the R_mcmc simulations, the complete chain

4Using an Intel Core i7-2600 CPU 3.40 GHz.
5Some software for MCMC diagnostics:

• for Matlab:

– http://becs.aalto.fi/en/research/bayes/mcmcdiag/

– http://helios.fmi.fi/~lainema/mcmc/

• for R: http://cran.r-project.org/web/packages/coda/
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is saved with names such as mcmcstates_lasso_final or mcmcstates_mars_final. In this ver-
sion of abc-sde we are not providing a mechanism to prevent such files to be created: the user
might want to comment-out the appropriate lines towards the end of the abc_mcmc.m file.

We remove the initial 2,000 draws (burn-in), i.e. the first 2,000 rows in MCMCstates, cor-
responding to the first 100,000 iterations (because we used a thinning of size 50), see the code
below. Then we examine the plots automatically produced via abc_posthoc() and reported
in Figure 3.2: each instance of abc_posthoc() creates a plot by taking as first input the ma-
trix of draws we want to inspect, as second argument the index of the column of such matrix
corresponding to a given unknown parameter, as third argument the index of the column corre-
sponding to the chain for δ, and finally an optional integer (default is 10) specifying the number
of “bins” required to subdivide the values of δ into separate classes, same as when constructing
an histogram. The resulting plots represent posterior means (solid lines) for varying δ’s: we
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Figure 3.2: Theophylline model: posterior means for varying bandwidth δ.

notice in some cases the posterior mean changes for varying δ, notably for logKe and logCl,
and we want to select draws corresponding to small δ’s, such that the posterior means result
“stable” for the chosen δ. Here we decide to select draws corresponding to δ ≤ 0.3 and exclude
the others from our inferential results.

MCMCredux = MCMCstates(2000:end,:); % remove the burn−in
% check posterior means vs bandwidth
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Ke Ka Cl σ σε
True value 0.08 1.49 0.04 0.45 0.32
ABC with Mars (*) 0.110 [0.068,0.168] 1.357 [0.965,1.913] 0.051 [0.036,0.070] 0.377 [0.244,0.584] –
ABC with Lasso (*) 0.108 [0.068,0.168] 1.068 [0.357,2.643] 0.046 [0.030,0.071] 0.363 [0.240,0.572] –
ABC with Mars 0.093 [0.053,0.141] 1.121 [0.772,0.160] 0.039 [0.026,0.063] 0.371 [0.209,0.648] 0.363 [0.249,0.536]
ABC with Lasso 0.101 [0.068,0.141] 1.053 [0.627,1.469] 0.046 [0.037,0.058] 0.326 [0.226,0.478] 0.272 [0.244,0.306]

Table 3.1: Theophylline example: posterior means and 95% credible intervals. Asterisks denote results obtained
when σε has been kept constantly equal to its true value (and thus it has not been estimated).

abc_posthoc(MCMCredux,1,5,15);
abc_posthoc(MCMCredux,2,5,15);
abc_posthoc(MCMCredux,3,5,15);
abc_posthoc(MCMCredux,4,5,15);
% remove draws having bandwidth > 0.3, then remove the last column (bandwidth)
MCMCfinal = MCMCredux(MCMCredux(:,end)<0.3,1:4);
% check autocorrelations
acf(MCMCfinal(:,1),40);
acf(MCMCfinal(:,2),40);
acf(MCMCfinal(:,3),40);
acf(MCMCfinal(:,4),40);

For the selected ∼ 1, 950 draws we check their autocorrelation using acf(): plots show
rapidly decaying autocorrelation functions (not reported here) and therefore these have all been
used for our inference. Finally we exponentiate means and percentiles in order to produce results
for the original untransformed parameters, reported as “ABC with MARS (*)” in Table 3.1.

% Obtain inferential results on non−log scale
>> exp(mean(MCMCfinal(:,1:4)))

ans =

0.1097 1.3572 0.0511 0.3772
>> exp(perctile(MCMCfinal(:,1:4),2.5))

ans =

0.0677 0.9652 0.0358 0.2443

>> exp(perctile(MCMCfinal(:,1:4),97.5))

ans =

0.1680 1.9127 0.0697 0.5837

We now use the same prior π(theta) to produce ABC inference for when Lasso is employed
in summary statistics computations. We simply need to specify regrtype = ’lasso’ and then
run abc_mcmc same as before. However using the same settings as above the acceptance rate
grows to 25% which is too high: we notice in this case we are able to reduce drastically the
settings pertaining δ without compromising the exploration of the approximated posterior (as
warned in section 3.4). We thus set

mean_bandw = 0.07;
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bandw_start = 0.07;
maxbandwidth = 0.15;
regrtype = 'lasso';

while still obtaining an acceptance rate of 14%. Results are again in Table 3.1, obtained by
selecting those draws having δ < 0.04.

The case of σε unknown

We now want to consider the case where σε needs to be estimated. This is not only interesting
from the inferential point of view, but it also gives a motivation to show how to modify our code
to accommodate such case. We need to:

• modify step_rw to include the initial value for the standard deviation of Gaussian inno-
vations for Metropolis random walk corresponding to σε;

• write a 1 in the parmask entry for σε;

• modify var_training by adding a corresponding entry for σε (ideally such value should
be obtained by running a new pilot).

• modify the function theophylline_prior accordingly, see below.

We set:

step_rw = [0.55,0.2,0.7,0.22,0.1];
parmask = [0, 1, 1, 1, 1, 1];

Then, since we want to re-run the pilot to obtain a training region for σε we modify the appro-
priate section in theophylline_prior and add

log_sigmaepsilon = unifrnd(−2.3,−0.22).
out = [log_Ke,log_Ka,log_Cl,log_sigma,log_sigmaepsilon];

We can now run the pilot with the same settings as before using the abc_training function while
considering MARS for producing summary statistics (regrtype = ’mars’). abc_training re-
turns among other things a vector var_training, this contains the values [0.8417, 0.5464, 1.0298, 0.5765, 0.3559]
which we will feed later on to abc_mcmc. Also the matrix training is created. By graphical
examination of each of its columns we deduce the following priors to be used in the ABC-
MCMC procedure: logKe ∼ N(−2.7, 1), logKa = N(0.3, 0.82), logCl = N(−3.5, 1), log σ =
N(−1, 0.32), log σε = N(−1, 0.22). Therefore we now need to modify the theophylline_prior
function in order to plug the new priors for ABC-MCMC, same as previously shown:

[...]

%::: MCMC PHASE: SPECIFY HERE PRIOR DENSITIES

log_Ke_prior = normpdf(theta(1),−2.7,1);
log_Ka_prior = normpdf(theta(2),0.3,0.8);
log_Cl_prior = normpdf(theta(3),−3.5,1);
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log_sigma_prior = normpdf(theta(4),−1,0.3);
log_sigmaepsilon_prior = normpdf(theta(5),−1,0.2);

out = log_Ke_prior*log_Ka_prior*log_Cl_prior*log_sigma_prior*...
log_sigmaepsilon_prior;

[...]

%::: TRAINING PHASE: SPECIFY HERE SAMPLING FROM PRIORS USED IN MCMC

log_Ke = normrnd(−2.7,1);
log_Ka = normrnd(0.3,0.8);
log_Cl = normrnd(−3.5,1);
log_sigma = normrnd(−1,0.3);
log_sigmaepsilon = normrnd(−1,0.2);

out = [log_Ke,log_Ka,log_Cl,log_sigma,log_sigmaepsilon];

[...]

We plug the means of the Gaussian priors into bigtheta_start then we can finally run ABC-
MCMC via abc_mcmc as usual.

mean_bandw = 0.6;
bandw_start = 0.6;
maxbandwidth = 1.2;
bigtheta_start = [0, −2.7, 0.3, −3.5, −1, −1 ];
parmask = [0 , 1, 1, 1, 1, 1 ];
parbase = bigtheta_start;
sde_param{1} = bigtheta_start;

var_training = [0.8417 0.5464 1.0298 0.5765 0.3559];

Results are in Table 3.1, produced from a set of about 2,070 draws corresponding to δ < 0.3
(we discarded the same amount of draws from the “burn-in” as in previous analyses). For some
parameters Figure 3.3 gives a comparison between their true values, their kernel smoothing
estimates6 of the ABC marginal posterior densities, their Gaussian priors π(theta) used during
the MCMC and the uniform priors π0(theta) used in the pilot.

Finally we repeated the whole procedure again (including a new pilot and thus deduced new
priors for ABC-MCMC) for the case regrtype = ’lasso’; for brevity we only report inferential
results, see Table 3.1.

6This functionality is not provided in abc-sde.
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Figure 3.3: Theophylline example when using MARS with σε unknown: approximate posteriors (solid curves),
Gaussian priors (dashed lines) and uniform priors used during the pilot. The vertical lines correspond to true
parameter values.
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Chapter 4

A two-dimensional example

Here we consider a two-dimensional example implementing a stochastic version of the Lotka-
Volterra (LV) predator-prey model, often considered as a toy-model for chemical kinetics (see e.g.
[16], [21]). Files pertaining this example are stored in the \...\abc-sde\Lotka-Volterra folder.

Because of its use in chemical kinetics we can consider prey (X1) and predators (X2) as two
interacting chemical “species” of “reactants” subject to three “reactions” R1, R2 and R3 defined
as:

R1 : X1
c1−→ 2X1

R2 : X1 + X2
c2−→ 2X2

R3 : X2
c3−→ ∅.

Reaction R1 represents prey reproduction. R2 captures predator-prey interaction (consumption
of prey by predator, in turn influencing predator reproduction rate), while R3 represents death
of predators due to natural causes. Such reactions occur at rates specified by some unknown
constant c1, c2 and c3. For given values of the three constant rates and by specifying initial
values X0 = (x01, x02) for the amount of populations X1 and X2 respectively, the dynamics of
the system is completely specified and realizations from the LV model can be simulated exactly
via the “Gillespie algorithm” [22]. The “size of populations”, i.e. the number of molecules, for
the two chemical species at a generic time t > 0 will be denoted by Xt = (Xt,1, Xt,2)

T and of
course Xt,j takes non-negative integer values (j = 1, 2).

We can simulate a realisation of the stochastic LV model in Matlab using for example
GillespieSSA [5] (included within abc-sde), instructions are below, however since the task
itself might be of no special interest to the reader of this guide, alternatively it is possible to
just run the following:

load('lv_full_seed')
% restore the state for the pseudorandom numbers used to create the data−file
rng(lv_full_seed)
load('data_full.dat')
time = data_full(:,1);
yobs = data_full(:,2);
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vrbl = data_full(:,3);

Such instructions load the standard data-arrays and restore the state producing the stream of
pseudo-random numbers which have been used to simulate data as described in the section below
(such section can be skipped).

Notice Matlab’s built-in rng function might be unavailable for versions of Matlab older
than 7.12: in such case an error will be issued. It is completely safely to comment such line,
however it will not be possible to recover the same stream of pseudo-random numbers used to
generate data in this example, and as such results might differ with those reported here.

4.1 Data generation (optional)

We first need to specify the matrices containing the coefficients of reactants (left side of the
reactions above) and products (right side of the reactions).

% c_reac(j,i) = coefficient for the j−th chemical species at the
% reactant side of the i−th reaction
c_reac = [1 1 0 ;

0 1 1 ];
% c_prod(j,i) = coefficient for the j−th chemical species at the
% product side of the i−th reaction
c_prod = [2 0 0 ;

0 2 0 ];

Then we use the same setup as in [16] and set the initial states to be X0 = (x01, x02) = (100, 100)
and constant rates (c1, c2, c3) = (0.5, 0.0025, 0.3). We want to simulate a realisation of the
stochastic LV system from time t = 0 to time t = 50: it is sufficient to invoke the function
gillespiessa and specify

X0 = [100;100]; % the initial states
const_rates = [0.5, 0.0025, 0.3]; % the constant rates
t_end = 50; % the end−time for the simulation
[nummol,time_reac] = gillespiessa(const_rates, c_reac, c_prod, X0, t_end);
plot(time_reac,nummol)
xlabel('Time')

The output returns the times corresponding to when reactions take place and the corre-
sponding number of molecules for each species. The resulting plot is given in Figure 4.1.

We use the trajectories previously obtained to extract data at integer sampling times in
[0, 50]. The resulting points (50 for Xt,1 and 50 for Xt,2) are then corrupted with i.i.d. Gaussian
measurement noise with mean zero and variance 10, εi,j ∼ N(0, 10), i = 0, ..., 49, j = 1, 2, that
is

yi,1 = Xi,1 + εi,1 (4.1)
yi,2 = Xi,2 + εi,2 (4.2)

where εi,1 is independent of εi,2 for every i and they are both independent of Xt,1 and Xt,2 for
every t.
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Figure 4.1: A realization from the stochastic LV model: Xt,1 (blue) and Xt,2 (green).

4.2 An SDE model

As shown in section 4.1 it is possible to simulate exactly a discrete Markov process for the
three considered reactions, however exact simulation implies computationally costly inference.
A continuous time approximation is often preferred and a stochastic differential equation is
formulated. In this case we consider the following (chemical Langevin equation)1

dXt = Sh(Xt, c)dt+ Sdiag
{√
|h(Xt, c)|

}
dWt (4.3)

where diag{z} denotes a diagonal matrix having values from vector z on its main diagonal,
Xt = (Xt,1, Xt,2)

T , dWt = (dWt,1, dWt,2, dWt,3)
T has independent (standard) Brownian motions

as components, c = (c1, c2, c3)
T and we take h(Xt, c) = (c1Xt,1, c2Xt,1Xt,2, c3Xt,2)

T . h(·) is the
hazard function and S is the stoichiometry matrix defined as

S =

(
1 −1 0
0 1 −1

)
.

Goal is to estimate (c1, c2, c3) given noisy data {yi,1, yi,2}i=0,...,49 as from (4.1)-(4.2), where
the unobserved latent states are modelled via (4.3). We assume residual variability and initial
state values to be known constants equal to σε =

√
10 and (x0,1, x0,2) = (100, 100) respectively2.

The actual inference will be performed on the log-transformed rates, therefore in practice we
consider theta = (log c1, log c2, log c3).

1Such equation can be expressed in several equivalent ways, see section 7 in [8] and section 8.3.3 in [21] for a
discussion. Some hints for an efficient implementation are given in lv_sdefile.m. Also absolute values in (4.3)
are not strictly necessary, only useful for numerical stability (as in [23]).

2Same as with the theophylline example, we can consider the possibility to estimate the measurement error
variability σε, see page 36. Similarly, it is also possible to estimate the initial states (X0,1, X0,2).
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Notice this is quite a different example compared to the theophylline model considered in
section 3. In fact here the diffusion process Xt underlying (4.3) is not the one generating data
(in the hypothesis of no measurement error), but instead here Xt is a continuous approxima-
tion to the true (discrete) stochastic process we considered to simulate chemical reactions (the
Gillespie algorithm). Therefore here the postulated underlying latent state is itself an imperfect
representation of reality, regardless of the presence of measurement error.

4.3 Identify a “training” region (optional)

In order to run a pilot, we specify a diffuse but proper prior π0(theta): log c1 ∼ U(−3, 2),
log c2 ∼ U(−7, 0), log c3 ∼ U(−3, 2). Since the pilot procedure aims at drawing samples from
π0(theta), we set the appropriate commands into lv_prior.m (bottom lines) as

log_c1 = unifrnd(−3,2);
log_c2 = unifrnd(−7,0);
log_c3 = unifrnd(−3,2);

This example is computationally intense as the SDE does not have a closed-form solu-
tion and therefore we are required to use the Euler-Maruyama integration via integrator =
’em’. We specified trainiter=100, numsimpar = 2*100 and regrtype=’lasso’ (warning: this
may require about 2,5 hrs on a performing desktop computer!). The pilot starts by invoking
abc_training.m with

[training,var_training] = abc_training(trainitermax,numsimpar,sde_param,...
parmask,parbase,regrtype);

and returns a matrix training whose columns should be graphically explored.
training is a 100 x 3 matrix whose columns have the sampling distributions in Figure

4.2. We can see that such distributions have tighter supports than those for π0(theta). By
examining Figure 4.2 we decide to impose the following priors π(theta) which will be used
for ABC-MCMC: log c1 ∼ N(−1.55, 0.42), log c2 ∼ N(−6, 0.32), log c3 ∼ N(−1.45, 0.52). See
section 3.6.2 for guidance on how to code such densities, or just look at lv_prior.m.

4.4 ABC–MCMC

We plug the means (−1.55,−6,−1.45) from the Gaussian distributions determined from the pilot
into (log c1, log c2, log c3) in the ABC-MCMC procedure, that is by considering also constant
parameters we set

bigtheta_start = [log(100), log(100), −1.55, −6, −1.45, log(sqrt(10))];
parmask = [0 , 0, 1, 1, 1, 0 ];
parbase = bigtheta_start;
sde_param = {bigtheta_start,problem,owntime,time,numdepvars,vrbl,integrator};
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Figure 4.2: LV model pilot: sampling distributions of log c1, log c2 and log c3 from the pilot procedure.

We run the ABC-MCMC for R_mcmc = 2000000 iterations, using numsimpar = 20*100 (ten
times larger than for the pilot, as here summary statistics are computed only once) and setting a
maximum value for the bandwidth maxbandwidth = 1.1 which has to be set by trial-and-error.
Also we set mean_bandw = 0.6 and bandw_start = 0.6 and obtained an acceptance rate of
about 13% (interestingly if previous values are set to 1, 0.5 and 0.5 respectively we get a 0%
acceptance rate! So our algorithm is very sensitive to such settings). Notice you might get some
warnings of the type

Warning: NaN found in Y, interpolation at undefined values will result in undefined
values.

You can safely ignore such warnings (or type warning off at the prompt): these are produced
because some simulated trajectory contains NaN’s. However those trajectories will be automati-
cally rejected by the Metropolis-Hastings acceptance ratio. After about 4 hrs of computation3

we obtained our MCMC sample MCMCstates.
We retrieve the produced chain of length 40001 for each unknown parameter (remember

the chain has been thinned with thin=50 therefore it corresponds to 40000 ∗ 50 + 1 = 2000001
draws, the starting value and additional two-million draws) by accessing the MCMCstates matrix.

3On a Intel Core i7-2600 CPU 3.40 GHz...I know, the timing does not look very appealing for a toy model
meant to be used as an illustrative example...but again, the SDE has to be integrated numerically.
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We then remove the initial 2,500 iterations (corresponding to a burn-in of 2500*50=125000
iterations)

>> MCMCredux = MCMCstates(2500:end,:);

Then we explore each chain for varying bandwidths by inspecting the plots produced by

>> abc_posthoc(MCMCredux,1,4,15);
>> abc_posthoc(MCMCredux,2,4,15);
>> abc_posthoc(MCMCredux,3,4,15);

By looking at Figure 4.3 we deduce that we should keep draws corresponding to δ < 0.25
as for larger bandwidth posterior means vary markedly (particularly log c1). We retain draws
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Figure 4.3: LV model: posterior means for varying bandwidth δ.

satisfying the criterion above via the following (notice we also get rid of the last (fourth) column
corresponding to the bandwidth δ, which is of no use anymore):

>> MCMCfinal = MCMCredux(MCMCredux(:,end)<0.25,1:3);

we are thus left with a sample of about 1120 draws for each chain. We now check whether the
autocorrelation function for each chain decays rapidly: we do this via the acf function:
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>> acf(MCMCfinal(:,1),30);
>> acf(MCMCfinal(:,2),30);
>> acf(MCMCfinal(:,3),30);

We notice a rapid decay in the autocorrelations (not reported) and therefore there is no
need for further thinning and we can directly use the chains to produce posterior inference. We
exponentiate means and percentiles in order to make inference for the original untransformed
parameters (c1, c2, c3).

>> exp(mean(MCMCfinal(:,1:3)))

ans =

0.4398 0.0021 0.2331

>> exp(perctile(MCMCfinal(:,1:3),2.5))

ans =

0.3478 0.0017 0.1709

>> exp(perctile(MCMCfinal(:,1:3),97.5))

ans =

0.5521 0.0028 0.3279

Therefore posterior means, 2.5th–97.5th posterior percentiles are: 0.44 [0.35,0.55], 0.0021
[0.0017, 0.0028], 0.23 [0.17, 0.33] for c1, c2 and c3 respectively, where the true values used to
produce data are (c1, c2, c3) = (0.5, 0.0025, 0.3).

By considering the vagueness of the initial prior π0(theta) and the several approximations
affecting our results (continuous approximation to a discrete process, Euler-Maruyama discreti-
sation, measurement noise, δ > 0, non-sufficient statistics) the results are quite satisfactory.
Figure 4.4 gives a comparison between the true value of log c1, the kernel smoothing estimate of
the ABC posterior density for log c1, its Gaussian prior π(log c1) used during the MCMC and
the uniform prior π0(log c1) used in the pilot.

4.5 A challenging case: partially observed systems

In this section we consider the case where only the first coordinate Xt,1 is observed (again with
known measurement error). This means that during the ABC inference we still simulate from
the 2-dimensional SDE system, however only summary statistics for the first coordinate are
used (of course after adding simulated measurement noise to Xt,1) for comparison against the
summary statistics for real data.

If we only consider, for simplicity, the possibility to load our data-file, then there is no
modification to be made to the code considered above for the fully observed case. That is to
say, we simply removed from data_full.dat the rows corresponding to the second coordinate:
the reduced data-file is available as data_partial.dat to reflect that we are now dealing with
a partially observed system. The only relevant difference with the code for the fully observed
system is the use of
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Figure 4.4: LV model: approximate posterior for log c1 (solid curve), Gaussian prior (dashed line) and uniform
prior used during the pilot. The vertical line corresponds to the true value of log c1.

load('lv_full_seed')
% restore the state for the pseudorandom numbers used to create the data−file
rng(lv_full_seed)
load('data_partial.dat')
time = data_partial(:,1);
yobs = data_partial(:,2);
vrbl = data_partial(:,3);

All other instructions can be left unchanged and the code can be run. However for ease of use
we created a separate run-file, named lv_partial.run. For simplicity we use the same settings
as in the previous (fully observed) case, using the same priors etc. although a new pilot could
be performed leading to different training regions. After running the MCMC simulations via
abc_mcmc we filter the obtained MCMCstates matrix:

>> MCMCredux = MCMCstates(2500:end,:); % get rid of burn−in
>> abc_posthoc(MCMCredux,1,4,15);
>> abc_posthoc(MCMCredux,2,4,15);
>> abc_posthoc(MCMCredux,3,4,15);
% from the plots created above we decide to select delta < 0.2
>> MCMCfinal = MCMCredux(MCMCredux(:,end)<0.2,:);
>> acf(MCMCfinal(:,1),40);
>> acf(MCMCfinal(:,2),40);
>> acf(MCMCfinal(:,3),40);
% no serious autocorrelation is detected
>> exp(mean(MCMCfinal(:,1:3)))

ans =

0.3749 0.0019 0.2515
>> exp(perctile(MCMCfinal(:,1:3),2.5))

ans =

0.2780 0.0013 0.1744
>> exp(perctile(MCMCfinal(:,1:3),97.5))
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ans =

0.5283 0.0029 0.3793

Therefore our estimate for c1 is 0.37 [0.28,0.53], for c2 is 0.0019 [0.0013,0.0029] and for c3
is 0.25 [0.17,0.38]; again, true values are (c1, c2, c3) = (0.5, 0.0025, 0.3). Comparisons between
ABC posteriors, priors used during MCMC and priors used during the pilot are in Figure 4.5.
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Figure 4.5: Partially observed LV model: approximate posteriors (solid curves), Gaussian priors (dashed lines)
and uniform priors used during the pilot. Vertical lines corresponds to true parameter values.
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