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Abstract

Stochastic differential equation (SDE) models have shown useful to describe contin-
uous time processes, e.g. a physiological process evolving in an individual. Biomedical
experiments often imply repeated measurements on a series of individuals or experimental
units and individual differences can be represented by incorporating random effects into
the model. When both system noise and individual differences are considered, stochas-
tic differential mixed effects models ensue. In most cases the likelihood function is not
available, and thus maximum likelihood estimation is not possible. Here we propose to
approximate the unknown likelihood function by first approximating the conditional tran-
sition density of the diffusion process given the random effects by a Hermite expansion,
as suggested by Aït-Sahalia (2001, 2002), and then numerically integrate the obtained
conditional likelihood with respect to the random effects. The approximated maximum
likelihood estimators are evaluated on simulations from the Ornstein-Uhlenbeck process
and Geometric Brownian motion.

Keywords: Approximate maximum likelihood; closed-form transition density expansion;
Hermite expansion; random effects; Ornstein-Uhlenbeck process; Geometric Brownian motion;
diffusion processes; stochastic differential equations; biomedical applications.

1 Introduction

Studies in which repeated measurements are taken on a series of individuals or experimental
animals play an important role in biomedical research. It is often reasonable to assume that
responses follow the same model form for all experimental subjects, but model parameters
vary randomly among individuals. The increasing popularity of Mixed-Effects models lies
in their ability to model total variation, splitting it into its within- and between-individual
components. This often leads to more precise estimation of population parameters, which is
especially useful in pharmacokinetic/pharmacodynamic (PK/PD) modeling, where enhanced
precision of estimation translates into considerable savings both in resources and in human or
animal discomfort.
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Dynamical biological processes are usually modeled by means of systems of deterministic
differential equations (ordinary (ODE), partial (PDE), or delay (DDE)). These however do
not account for the noisy components of the system dynamics often present in biological
systems. System error (or system noise) represents the cumulative effect on the actual state
of the system of a host of mechanisms which cannot be individually included in the model
description (like hormonal oscillations, variations of the stress level, variable muscular activity
etc.). Noise in the differential equations describing the behavior of the system requires an
extension to the class of stochastic differential equation (SDE) models.

The theory for Mixed-Effects models is well developed for deterministic models (without
system error), both linear and non-linear (Lindstrom and Bates (1990), Breslow and Clayton
(1993), Vonesh and Chinchilli (1997), Diggle et al. (2002)), and standard software for model
fitting is available, see e.g. Pinheiro and Bates (2002) and references therein. Early and
important references in the pharmacokinetic field are Sheiner and Beal (1980, 1981). On
the other hand, to our knowledge there is practically no theory at present for SDE models
with random effects. The problem here is that estimating parameters in SDE models is not
straightforward, except for simple cases. A natural approach would be likelihood inference, but
the transition densities of the process are rarely known, and thus it is usually not possible to
write the likelihood function explicitly. In Jelliffe et al. (2000) methods for PK/PD population
modeling are reviewed, but the authors regret that system noise is not considered since it is
difficult to estimate. In Overgaard et al. (2005) and Tornøe et al. (2005) a SDE model with log-
normal distributed random effects and a constant diffusion term is treated, but this constrains
the class of models to be SDEs with additive noise. In Ditlevsen and De Gaetano (2005) the
likelihood function for a simple SDE model with random effects is calculated explicitly, but
generally the likelihood function is unavailable. Eventually, as SDE models are more commonly
applied to biomedical data, there will be an increasing need for developing a general theory
for parameter estimation including mixed-effects.

In the present work an estimation method for the parameters of an SDE model incorpo-
rating random effects is proposed: these models may be called stochastic differential mixed
effects (SDME) models. We consider SDME models whose drift and diffusion terms can de-
pend linearly or nonlinearly on state variables and random effects following any continuous
distribution, and an approximation to the likelihood function is computed. The likelihood can
seldom be obtained in closed form since it involves explicit knowledge of the process transition
density, which is often unavailable, and thus exact parameter estimators are also unavailable.
It is therefore necessary to approximate the transition density numerically. To our knowledge,
three ways have been proposed to do this:

1. solving numerically the Kolmogorov partial differential equations satisfied by the tran-
sition density (Lo (1988));

2. deriving a closed-form Hermite expansion to the transition density (Aït-Sahalia (2001,
2002));

3. simulating the process in order to Monte-Carlo-integrate the transition density (e.g.
Pedersen (1995), Brandt and Santa-Clara (2002), Durham and Gallant (2002), Hurn
and Lindsay (1999), Hurn et al. (2003), Nicolau (2002)): this methodology is known as
simulated maximum likelihood (SML).
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Each of these three techniques has been successfully implemented, but each has its limitations.
Aït-Sahalia (2002) notes that methods 1 and 3 above are computationally intense and poorly
accurate. Conversely, Durham and Gallant (2002) build on their importance sampling ideas
in order to improve the performance of Pedersen’s (1995) (or equivalently Brandt and Santa-
Clara’s (2002)) method, and point out that method 2 above, while accurate and fast, is only
available for a small number of models.

We choose to employ the transition density approximation method suggested in Aït-Sahalia
(2001, 2002) for time-homogeneous SDE, since it is the fastest and the most accurate among
the available methods (Durham and Gallant (2002), Jensen and Poulsen (2002)). This is
a desirable condition to make the parameter estimation procedure proposed here effective
and reliable. We thus derive an approximation to the likelihood function and estimate the
parameters of a SDME model by (approximated) maximum likelihood.

In this paper attention is restricted to time-homogeneous SDEs, but the method pro-
posed can be applied to more general multidimensional SDME models, since also for time-
inhomogeneous SDEs (which depend directly on time t, not only through the process values)
the transition density can be expanded in closed form (Egorov et al. (2003)).

Evidence of the accuracy of the estimation method is given by simulation results, where
exact and approximated parameter estimates are compared for SDME models of a Brownian
motion with drift, of Geometric Brownian Motion and of the Ornstein-Uhlenbeck process.
The estimates obtained are close to the true parameter values, and this result is achieved
using moderate values of M (the number of experimental units, e.g. the number of subjects)
and n (the number of observation for a given experimental unit). This is relevant for applica-
tions of these methods in situations where large data sets are unavailable, e.g. in biomedical
applications, where Mixed-Effects theory is broadly applied.

2 Stochastic Differential Mixed-Effects Models

Consider a d-dimensional (Itô) SDE model for some continuous process evolving in M different
experimental units (e.g. subjects) randomly chosen from a theoretical population:

dX i
t = µ(Xi

t , θ, b
i)dt + σ(Xi

t , θ, b
i) dW i

t , Xi
0 = xi

0 i = 1, . . . ,M (1)

where θ ∈ Θ ⊆ Rp is a p-dimensional fixed effects parameter (the same for the entire popula-
tion) and bi ≡ bi(Ψ) ∈ B ⊆ Rq is a q-dimensional random effects parameter (subject specific)
whose density function in the population pB is parametrized by an r-dimensional parameter
Ψ ∈ Υ ⊆ Rr. The W i

t are standard (L× 1)-dimensional Brownian motions. The W i,l
t and bj

are assumed mutually independent for all 1 ≤ i, j ≤ M , 1 ≤ l ≤ L, and independent of Xi
0.

The drift and the diffusion coefficient functions µ(·) : E×Θ×B → Rd and σ(·) : E×Θ×B → S
are assumed known up to the parameters, and are assumed sufficiently regular to ensure a
unique solution (Øksendal (2000)), where E ⊆ Rd denote the state space of Xi

t and S denotes
the set of the d× L positive definite matrices.

Assume that the distribution of Xi
t given (bi, θ) and Xi

s = xs, s < t, has a strictly positive
density w.r.t. the Lebesgue measure on E, which we denote by

x → pX(x, t− s|xs, b
i, θ) > 0, x ∈ E. (2)

Assume that subject i is observed at (ni +1) discrete time points (ti0, t
i
1, . . . , t

i
ni

) for each coor-
dinate k of the process (k = 1, ..., d; i = 1, ...,M). Let xi be the d(ni + 1)-dimensional vector
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containing the model (1) responses for the i’th subject, xi = (xi,1
0 , . . . , xi,1

ni , ..., x
i,d
0 , . . . , xi,d

ni ),
where xi,k(tij) = xi,k

tij
= xi,k

j , and let x = (x1, ..., xM ) be the N -dimensional total response

vector, N =
∑M

i=1 d(ni + 1). Write tij − tij−1 = ∆i
j for the distance between observation j − 1

and j for subject i.
We wish to estimate (θ, Ψ) given x, and we call (1) a stochastic differential mixed-effects

(SDME) model.

3 Maximum Likelihood Estimation in SDME Models

To obtain the marginal density of xi, we integrate the conditional density of the data given the
non-observable random effects bi with respect to the marginal density of the random effects,
using the fact that W i,l

t and bj are independent (1 ≤ i, j ≤ M , 1 ≤ l ≤ L). This yields the
likelihood

L(θ, Ψ) =
M∏
i=1

p(xi|θ, Ψ) =
M∏
i=1

∫
B

pX(xi|bi, θ) pB(bi|Ψ) dbi (3)

where p(·), pX(·) and pB(·) are density functions. Notice that p(xi|·) and pX(xi|·) are in
general different: the former being the density of xi given (θ, Ψ), and the latter being the
product of the transition densities for a given realization of the random effects and for a given
θ :

pX(xi|bi, θ) =
ni∏

j=1

pX(xi
j ,∆

i
j |xi

j−1, b
i, θ), (4)

where the transition densities pX(·) are as in (2). The distribution of the random effects is
often assumed to be normal, but pB(·) could be any density function. Solving the integral in
(3) yields the marginal likelihood of the parameters, independent of the random effects bi; by
maximizing the resulting expression (3) with respect to θ and Ψ we obtain the corresponding
maximum likelihood estimators θ̂ and Ψ̂.

In simple cases we can find an explicit expression for the likelihood function, and even
find explicit estimating equations for the maximum likelihood estimators (see Example 1).
However, in general it is not possible to find an explicit solution for the integral, and thus
exact maximum likelihood estimators are unavailable, i.e. when: (i) pX(xi

j , ·|xi
j−1, ·) is known

but we are unable to analytically solve the integral, and (ii) pX(xi
j , ·|xi

j−1, ·) is unknown. In (i)
we have to numerically evaluate the integral to obtain an approximation of the likelihood (3)
and then, by maximizing the resulting expression, approximate maximum likelihood estimators
are obtained. In (ii) we can approximate pX(xi

j , ·|xi
j−1, ·), then numerically solve the integral

in (3) and get the corresponding approximated maximum likelihood estimators.
In situation (ii) there exist several strategies to approximate the density pX(xi

j , ·|xi
j−1, ·),

e.g. by simulating a large number of process sample paths (e.g. Pedersen (1995), Brandt
and Santa-Clara (2002), Nicolau (2002), Hurn and Lindsay (1999)), or by solving numerically
the Kolmogorov partial differential equations satisfied by the transition density (Lo (1988)).
However, these techniques are computationally expensive. We propose to approximate the
transition density as suggested in Aït-Sahalia (2001, 2002), where the approximation is ob-
tained in closed-form, using a Hermite expansion as reviewed in section 4.1. Then, using this
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expression, the likelihood function is approximated, thus deriving approximated maximum
likelihood estimators of θ and Ψ, as suggested in section 4.2.

4 Closed-form transition density expansion and likelihood ap-
proximation

4.1 Transition density expansion for SDE models

Here we review the transition density expansion of a scalar (d = L = 1) time-homogeneous
SDE as suggested in Aït-Sahalia (2002). A generalization to multidimensional SDEs can be
found in Aït-Sahalia (2001), and we adapt the more compact notation used in the multidimen-
sional case to the one-dimensional situation. The extension to time-inhomogeneous processes
(i.e. the SDE depends directly on t, not only through the state variable Xt) is given in Egorov
et al. (2003). In the remaining of this section we drop the reference to θ when not necessary,
that is, we write f(x) instead of f(x, θ) for a given function f .

Consider the following 1-dimensional time-homogeneous SDE

dXt = µ(Xt)dt + σ(Xt)dWt, X(t0) = x0 (5)

where we want to approximate pX(xj ,∆j |xj−1), the conditional density of Xtj given Xj−1 =
xj−1, where ∆j = tj − tj−1. Under mild regularity conditions (Aït-Sahalia (2001)) the log-
arithm of the transition density can be expanded in closed form using an order J = +∞
Hermite series, and approximated by a Taylor expansion up to order K:

ln p
(K)
X (xj ,∆j |xj−1) = −1

2
ln(2π∆j)−

1
2

ln(σ2(xj)) +
C

(−1)
Y (γ(xj)|γ(xj−1))

∆j

+
K∑

k=0

C
(k)
Y (γ(xj)|γ(xj−1))

∆k
j

k!
. (6)

The coefficients C
(k)
Y are given in the appendix and γ(·) is the Lamperti transform, defined by

Yt ≡ γ(Xt) =
∫ Xt du

σ(u)
(7)

where the lower bound of integration is an arbitrary point in the interior of E (i.e. the constant
of integration is irrelevant). Then Yt is the solution to the SDE

dYt = µY (Yt)dt + dWt

where µY (·) is given by

µY (Yt) =
µ(γ−1(Yt))
σ(γ−1(Yt))

− 1
2

∂σ

∂x
(γ−1(Yt)).

4.2 Likelihood approximation for SDME models

For scalar time-homogeneous SDME models, the coefficients C
(k)
Y can be obtained in the

same way as suggested in section 4.1, by considering (θ, bi), ∆i
j and (xi

j , x
i
j−1) instead of θ,
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∆j and (xj , xj−1), respectively. Once the coefficients are obtained, an expression for p
(K)
X is

available and it is possible to approximate the likelihood of (θ, Ψ) for the SDME model (1)
by substituting the unknown transition density in (4) with its approximation, thus obtaining
a sequence of approximations to the likelihood function

L(K)(θ, Ψ) =
M∏
i=1

∫
B

p
(K)
X (xi|bi, θ) pB(bi|Ψ) dbi, (8)

where

p
(K)
X (xi|bi, θ) =

ni∏
j=1

p
(K)
X (xi

j ,∆
i
j |xi

j−1, b
i, θ) (9)

and p
(K)
X is given by equation (6). By maximizing (8) with respect to (θ, Ψ), we obtain the

corresponding approximated maximum likelihood estimators θ(K) and Ψ(K).
The method can be extended to time-inhomogeneous and/or multidimensional SDME

models, by extensions of the density expansion method, which are given by Aït-Sahalia (2001)
for the multidimensional time-homogeneous case, and by Egorov et al. (2003) for the one-
dimensional time-inhomogeneous case.

5 Implementation issues and numerical applications

This section reports applications of our estimation method to some famous SDE models that
we perturb with random effects: Brownian motion with drift, the Geometric Brownian Mo-
tion and the Ornstein-Uhlenbeck process. The main goals are to show the feasibility and
effectiveness of the proposed estimation method for SDME models, and to show that accurate
results can be obtained when using a “reasonable” and “realistic” data-set, i.e. when handling
a limited amount of data (say M = 10, ..., 50 subjects and n = 10, ..., 50 observations collected
on each subject), instead of considering large data-sets that are often unavailable, especially
in biomedical applications.

For numerical optimization reasons, the approximated estimators are always obtained by
minimizing the negative log-likelihood function, e.g. when using the density expansion method
we minimize

− log L(K)(θ, Ψ) = −
M∑
i=1

log
∫

B
p
(K)
X (xi|bi, θ) pB(bi|Ψ) dbi, (10)

and we denote with (θ(K),Ψ(K)) the resulting estimator

(θ(K),Ψ(K)) = arg min
θ,Ψ

(− log L(K)(θ, Ψ)).

It has been shown that K = 1 or 2 (Aït-Sahalia, 1999, 2001, 2002) is often sufficient to
approximate the transition density to obtain accurate estimates. We use either K = 1 or 2
order density expansion depending on the model, which seems to be sufficient for the considered
applications (in particular, for the Brownian motion with drift and the Geometric Brownian
Motion, a K = 1 order expansion gives the exact density expression). The coefficients C

(k)
Y

for the considered models are given in appendix (notice that, in general, the C
(k)
Y can be
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calculated using a symbolic calculus software). The integral appearing in (10) is numerically
evaluated using the trapezoidal rule on a grid of two-hundred bi values, except for Example 3
where B is assumed to be a square grid of 100× 100 values.

For each example, parametric bootstrap was performed (Efron and Tibshirani (1993)) to
obtain means of the parameters estimates and their 95% confidence intervals. More specifically,
for each SDME model two hundred data sets, of dimensions n×M each, were generated using
different sets of parameters and different values of M and n, and the corresponding (exact
and/or approximated) parameter estimates were obtained. For each parameter, the sample
mean and the empirical 95% confidence intervals (from the 2.5th to the 97.5th percentile)
from the obtained estimates are reported in Table 1–5 together with measures of symmetry
(skewness and kurtosis). In Example 1 the exact expression for the log-likelihood function of
the SDME model is available, so we can graphically compare the shape of the surface of a
chosen profile-loglikelihood with the corresponding surface obtained by numerical integration,
as given in Figure 1. The same comparison is conducted in Example 2, but here only the
transition density is known whereas the exact expression of the log-likelihood is unavailable in
closed form, so we compare the surface of a profile of the logarithm of expression (19) (where
the integral is numerically evaluated) with the surface of its K = 2 order approximation, as
given in Figure 2.

Finally, we want to stress the usefulness of using the method considered in section 4.1
to approximate pX . In fact, using e.g. the SML-like approaches (see the Introduction),
for each iteration of an optimization algorithm maximizing (3), the numerical simulation of
thousands of trajectories of the process can be required to approximate pX(xi

j ,∆
i
j |xi

j−1, ·).
Then, expression (4) must be evaluated and the integral in (3) must be numerically computed
for the given subject. Finally, repeating the procedure for all the M subjects, we get the
likelihood approximation for the current iteration of the optimization algorithm. From a
computational point of view this is a highly expensive procedure, essentially because of the
necessary large number of simulations of trajectories. Worse still, the larger the dimensions of
θ and Ψ the slower the optimization procedure convergence, and obviously the computational
time increases for large values of M and n. Instead, using the closed-form density expansion,
simulating process trajectories is not required, and the likelihood approximation (8) can be
evaluated more rapidly (Jensen and Poulsen (2002)).

Example 1: Brownian Motion with drift and Geometric Brownian Motion
with one random effect

Consider a Brownian motion with drift:

dZt = (β − σ2/2)dt + σdWt, Z0 = z0,

with solution

Zt = Z0 + (β − σ2/2)t + σWt. (11)

Assume an experiment is conducted on M different subjects. We are interested in estimating
the parameters in the population, but expect individual differences in the processes, and would
therefore consider a random effect in β, which leads to the SDME model:

dZi
t = (β + βi − σ2/2)dt + σdW i

t , Zi
0 = zi

0, i = 1, ...,M
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and we assume βi ∼ N(0, σ2
β). The latter model has solution given by

Zi
t = Zi

0 + (β + βi − σ2/2)t + σW i
t , i = 1, ...,M. (12)

In this simple example we have bi = βi, θ = (β, σ2) and Ψ = σ2
β . We wish to estimate

(β, σ2, σ2
β) given a set z = (z1, ..., zM ) of observations from model (12).

The log-likelihood function is (Ditlevsen and De Gaetano (2005))

log L(θ, Ψ) =
M

2
log
(

σ2

σ2
β

)
− N −M

2
log(2πσ2)− 1

2

M∑
i=1

log

(
(∆i)ni

(
T i +

σ2

σ2
β

))

−

∑
i,j

1
∆i

j
(yi

j − yi
j−1 − α∆i

j)
2 −

∑
i(y

i
ni
− yi

0 − αT i)2
(

T i + σ2

σ2
β

)−1

2σ2
(13)

where, for ease of notation, we define α = β − σ2/2, ∆i =
(∏ni

j=1 ∆i
j

) 1
ni and T i =

∑ni
j=1 ∆i

j .
The last sum is simply the length of the observation interval for the i’th subject.

Assume equidistant observations and that each subject has the same number of observa-
tions, that is, assume ∆i

j = ∆ and ni = n for all 1 ≤ i ≤ M , 1 ≤ j ≤ ni. The maximum
likelihood estimators are given by (Ditlevsen and De Gaetano (2005)):

σ̂2 =
1
M

∑M
i=1

∑n
j=1(z

i
j − zi

j−1 − α̂∆)2 − ∆
MT

∑M
i=1(z

i
n − zi

0 − α̂T )2

T −∆
(14)

σ̂2
β =

1
MT

[∑M
i=1(z

i
n − zi

0 − α̂T )2 −
∑M

i=1

∑n
j=1(z

i
j − zi

j−1 − α̂∆)2
]

T −∆
(15)

β̂ = α̂ +
σ̂2

2
(16)

where α̂ =
∑M

i=1(z
i
n − zi

0)/(MT ) and T = T i = n∆.
Now consider the transformed process Xt = exp(Zt), which leads to a SDME model of the

Geometric Brownian motion

dX i
t = (β + βi)Xi

tdt + σXi
tdW i

t , Xi
0 = xi

0, i = 1, ...,M

with βi ∼ N(0, σ2
β) and Itô solution

Xi
t = Xi

0 exp((β + βi − σ2/2)t + σW i
t ), i = 1, ...,M. (17)

The process is relevant e.g. in pharmacokinetics for the metabolism of a compound in plasma
following first order kinetics where we expect β < 0, or as a growth model, e.g. the initial
growth of bacterial or tumor cell populations, where we expect β > 0. See e.g. Braumann
(2002) for generalizations of this model.

The exact estimators (14)–(16) can be used as a benchmark to test the effectiveness of the
estimation method. In this example C

(k)
Y (·) = 0 for all k ≥ 2, and thus the order K = 1 density

expansion results in the exact transition density of the process, see the appendix for details. We
therefore compare the exact maximum likelihood estimators with the approximated estimators,
the only difference being that the integral in (3) is solved analytically or numerically.
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For different sets of parameter values and for different choices of M and n, 200 data sets
were generated from (12) and the parameters were estimated using (14)–(16) (see Table 1).
Then, 200 data sets were generated from (17) and the approximated estimators were obtained
by minimization of the numerical solution of (10); results from the latter approach are reported
in Table 2. In all simulations we fixed Zi

0 = log(100), Xi
0 = 100 for all i and T = 100. From

Table 1 it is seen that the true parameter values are well identified using the exact maximum
likelihood estimators (14)-(16) and, in particular, the cases (M,n) = (50, 10) produce better
estimates of β and σβ than the cases (M,n) = (10, 50) as expected, since M is the sample
size of draws from the distribution of β. The same apply to the approximated estimates in
Table 2, but here the cases (M,n) = (10, 50) produce much worse estimates whereas cases
(M,n) = (50, 10) produce estimates comparable in quality to the exact ones. Obviously, the
approximated estimators suffer the bias induced by the numerical integration in expression
(10), and a finer integration grid (see section 5) should improve the performance of the method
at the cost of increasing computational time. In all cases σ is well determined and does not
seem affected by the numerical integration.

Finally, in Figure 1 the contour plots of the shapes of the profiles of the exact log-likelihoods
(13) (for fixed σ2

β = 0.02) and the shapes of the corresponding approximations are compared for
different values of M and n: the exact log-likelihood is conditioned on observations generated
from model (12) with (β, σ2, σ2

β) = (−0.2, 0.2, 0.02), whereas the approximated log-likelihood
is conditioned on observations generated from model (17) with the same parameter values.
By looking at Figure 1, we see that the exact and approximated surfaces are quite similar,
and the approximation improves for increasing values of M . Differences in contour values are
imputable to the models used to generate observations: model (12) for the exact log-likelihood
and model (17) for the corresponding approximation. This implies proportional surfaces with
similar shapes: differences in the shape are due to the numerical evaluation of the integral in
(3).

Example 2: Ornstein-Uhlenbeck process with one random effect

Consider the Ornstein-Uhlenbeck process, defined by the following scalar SDE (d = L = 1)

dXt =
(
−Xt

τ
+ µ

)
dt + σdWt; X0 = x0 = 0

where µ ∈ R, τ > 0 and σ > 0 (see later for a different parametrization). This model is the
simplest mean-reverting SDE, and has been widely used e.g. in neuronal modeling, biology,
physics, engineering and finance, see e.g. Ditlevsen et al. (2005).

Consider the following SDME model

dX i
t =

(
−Xi

t

τ
+ µ + µi

)
dt + σdW i

t ; Xi
0 = xi

0 = 0, i = 1, ...,M (18)

and assume µi ∼ N(0, σ2
µ). Here bi = µi and we want to estimate θ = (µ, τ, σ) and Ψ = σ2

µ

given a set of observations x from model (18).
The conditional mean and variance of the Xi

t process are

E(Xi
t |Xi

0 = x0, µ, τ, σ, µi) = x0e
−t/τ + (µ + µi)τ(1− e−t/τ )

V ar(Xi
t |Xi

0 = x0, µ, τ, σ, µi) =
σ2τ

2
(1− e−2t/τ )
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and the transition density is normal and given by

pX(xi
j ,∆

i
j |xi

j−1, µ, τ, σ, µi) =
{

πσ2τ
(
1− e(−2∆i

j/τ))}−1/2

× exp
(
−
(
xi

j − xi
j−1e

−∆i
j/τ − (µ + µi)τ(1− e−∆i

j/τ )
)2

σ2τ(1− e−2∆i
j/τ )

)
.

Thus, the likelihood of (θ, Ψ) is given by

L(θ, Ψ) =
M∏
i=1

{
(πσ2τ)−ni/2

ni∏
j=1

(1− e−2∆i
j/τ )−1/2(2πσ2

µ)−1/2

×
∫

R
exp
{ ni∑

j=1

[
−
(
xi

j − xi
j−1e

−∆i
j/τ − (µ + µi)τ(1− e−∆i

j/τ )
)2

σ2τ(1− e−2∆i
j/τ )

]

− (µi)2

2σ2
µ

}
dµi

}
. (19)

We have no closed-form solution to the integral in (19), so exact estimators of θ and Ψ are
unavailable. We first consider a numerical integration approach, and the resulting estimators
are denoted with (θ̃, Ψ̃) = arg minθ,Ψ(− log L(θ, Ψ)). As a second attempt, we ignore the
fact that the exact transition density expression is already available, and we compute the
approximated estimator (θ(K),Ψ(K)) by approximating in closed-form the transition density of
model (18) with K = 2. The estimation results, obtained on 200 artificial data sets generated
by (18) using the Euler-Maruyama scheme with integration stepsize of 0.01 (Kloeden and
Platen (1992)), are reported in Table 3 and Table 4 for the first and the second estimation
approach respectively. For both the strategies we fixed ni = n for all i and T = 100. From
Tables 3 and 4 we notice that the true parameter values are correctly identified using both
the likelihood (19) and the corresponding order K = 2 approximation, though in the second
approach we notice that n should be larger than 10 in order to get satisfactory results.

Surface shapes of the log-likelihood profiles (for fixed (σ, σ2
µ) = (1, 1)) are reported in

Figure 2, and compare the numerical evaluation of the logarithm of expression (19) with the
corresponding order K = 2 expansion, both conditioned on observations generated from model
(18) with (µ, τ, σ, σ2

µ) = (1, 10, 1, 1). The comparison is satisfactory and, as suggested above,
values of n larger than 10 produce better results.

Many readers will be more familiar with a different parametrization of the Ornstein-
Uhlenbeck process, i.e.

dXt = −β(Xt − α)dt + σdWt; X0 = x0 = 0

with (α, β, σ) ∈ R × R+ × R+. The relations between µ, τ , α and β are obviously given by
τ = 1/β and µ = αβ. If we consider the following SDME model

dX i
t = −β(Xi

t − α− αi)dt + σdW i
t ; X0 = x0 = 0, i = 1, ...,M

with αi ∼ N(0, σ2
µ/β2), we have µi = αiβ. Thus, it is straightforward to obtain the coefficients

of the transition density expansion with respect to this parametrization, by substituting τ =
1/β, µ = αβ and µi = αiβ into the expressions given in appendix.

10



Example 3: Ornstein-Uhlenbeck process with two random effects

Reconsider the Ornstein-Uhlenbeck model with both µ and τ perturbed by random effects µi

and τ i, respectively. The following SDME model results

dX i
t =

(
− Xi

t

τ + τ i
+ µ + µi

)
dt + σdW i

t ; Xi
0 = xi

0 = 0, i = 1, ...,M (20)

where µi ∼ N(0, σ2
µ) and τ i has exponential pdf with parameter λ > 0. The latter distribution

is chosen to ensure that τ + τ i > 0. Assume µi and τ i′ independent for any i, i′ = 1, ...,M .
Here bi = (µi, τ i) and we want to estimate θ = (µ, τ, σ) and Ψ = (σ2

µ, λ) given a set of
observations x from model (20).

Now we only consider the estimation approach based on the transition density expansion,
i.e. we optimize (10), where∫

B
p
(K)
X (xi|bi, θ)pB(bi|Ψ)dbi =

∫ +∞

−∞

∫ +∞

0
p
(K)
X (xi|µi, τ i, θ)p(µi|σ2

µ)p(τ i|λ)dµidτ i,

and

p(µi|σ2
µ) =

exp(−(µi)2/(2σ2
µ))

σµ

√
2π

, p(τ i|λ) = λ exp(−λτ i).

The estimation results with K = 2, obtained on 200 artificial data sets generated by (20) using
the Euler-Maruyama scheme with stepsize 0.01, are reported in Table 5. We fixed ni = n for
all i and T = 100. Also in this example estimates are satisfactory, especially for increasing n
values; only the true λ value is not well identified in the case (µ, τ, σ, σ2

µ, λ) = (2, 12, 3, 0.5, 6).
That is natural considering the large variance of the exponential distribution. However, it
has to be noticed that, for ease of computations in the bootstrap procedure, a coarse grid has
been chosen for the numerical integration of the likelihood (see section 5), so it is likely that
better results can be achieved using a finer grid.

6 Conclusions

In the present work an approximated maximum likelihood estimator for the parameters of
stochastic differential mixed-effects models has been proposed. SDE models incorporating
random effects have been considered in few recent works (Overgaard et al. (2005); Tornøe
et al. (2005); Ditlevsen and De Gaetano (2005)) focused on models with constant diffusion
and normal or log-normal distributed random effects. The proposed estimation method can
be applied to models having non-constant and non-linear diffusion term, with random effects
following any continuous distribution and can be extended to multidimensional SDMEs. The
method is based on the construction of a sequence of approximations L(K) to the true likelihood
function L, which is obtained by expanding the process transition densities in closed-form to
order K, thus obtaining an expression which can be rapidly evaluated. For SDME models
more complex than the ones here considered, the likelihood approximation can be obtained
by taking advantage of any software with symbolic calculus capabilities.

Simulation results for the considered models show that the estimates obtained by mini-
mizing − log L(K), with K = 1 or 2, are close to the true parameter values, and this result
can be achieved using moderate values of M (the number of experimental units, e.g. the

11



number of subjects) and n (the number of observation for a given experimental unit). This is
relevant for applications in situations where large data sets are unavailable, e.g. in biomedical
applications, where Mixed-Effects theory is broadly applied.

The method suffers some limitations, e.g. it may be difficult (though theoretically possible,
see Aït-Sahalia (2001)) to obtain the transition density expansion for some multidimensional
SDME systems with irreducible or non-commutative noise (Kloeden and Platen (1992)). More-
over, it may be difficult to numerically evaluate the integral in (3) when the dimension of B
increases, and efficient numerical algorithms are needed. Finally, the models used e.g. in
biomedical applications are often more complicated than the simple examples illustrated here,
and it is still needed to see the applicability of the method in more realistic settings.

In conclusion, we propose a parameter estimation method for SDE models incorporating
random effects, which at least for the models considered here is reliable and effective and can
be easily applied using commonly available computational resources. We believe that such a
class of models will undergo increasing popularity, since it combines the nice features of the
Mixed-Effects theory (total variation is split in within-subject and between-subject variation)
with the possibility of considering random variability into the within-subject process dynamics,
thus providing a very flexible modeling approach.
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Appendix

Here we report the explicit expressions for the coefficients of the log-density expansion as
suggested in Aït-Sahalia (2001). Moreover, the coefficients are reported for both the Geometric
Brownian Motion and the Ornstein-Uhlenbeck SDME models.

Density expansion coefficients

For given values yj and yj−1 of the Y process (7) the coefficients of the log-density expan-
sion (6) are given by

C
(−1)
Y (yj |yj−1) = −1

2
(yj − yj−1)2

C
(0)
Y (yj |yj−1) = (yj − yj−1)

∫ 1

0
µY (yj−1 + u(yj − yj−1))du

and, for k ≥ 1,

C
(k)
Y (yj |yj−1) = k

∫ 1

0
G

(k)
Y (yj−1 + u(yj − yj−1)|yj−1)uk−1du.

The functions G
(k)
Y are given by

G
(1)
Y (yj |yj−1) = −∂µY (yj)

∂yj
−µY (yj)

∂C
(0)
Y (yj |yj−1)

∂yj
+

1
2

∂2C
(0)
Y (yj |yj−1)

∂y2
j

+
1
2

(
∂C

(0)
Y (yj |yj−1)

∂yj

)2

and for k ≥ 2

G
(k)
Y (yj |yj−1) = −µY (yj)

∂C
(k−1)
Y (yj |yj−1)

∂yj
+

1
2

∂2C
(k−1)
Y (yj |yj−1)

∂y2
j

+
1
2

k−1∑
h=0

(
k − 1

h

)
∂C

(h)
Y (yj |yj−1)

∂yj

∂C
(k−1−h)
Y (yj |yj−1)

∂yj
.

14



Geometric Brownian Motion: order K = 1 density expansion coefficients

For model (17) we have:

Yt = γ(Xt) =
log(Xt)

σ
,

then

µY (Yt) =
β + βi

σ
− σ

2
and for given values yi

j and yi
j−1 of the Y process, we have

C
(0)
Y (yi

j |yi
j−1) = (yi

j − yi
j−1)

(
β + βi

σ
− σ

2

)
=

log(xi
j)− log(xi

j−1)
σ2

(
β + βi − σ2

2

)
C

(1)
Y (yi

j |yi
j−1) = − 1

2σ2

(
β + βi − σ2

2

)2

C
(k)
Y (yi

j |yi
j−1) = 0, k ≥ 2

which yields the exact transition density

p
(1)
X (xi

j ,∆
i
j |xi

j−1) =
1

xi
j

√
2πσ2∆i

j

exp
(
−
(
log(xi

j)− log(xi
j−1)− (β + βi − σ2

2 )∆i
j

)2
2σ2∆i

j

)
= pX(xi

j ,∆
i
j |xi

j−1).

Ornstein-Uhlenbeck process with one random effect: order K = 2 density
expansion coefficients

For model (18) we have:
Yt = γ(Xt) = Xt/σ

then
µY (Yt) = −Yt/τ + ρ,

where ρ = (µ + µi)/σ, and for given values yi
j and yi

j−1 of the Y process, we have

C
(0)
Y (yi

j |yi
j−1) = (yi

j − yi
j−1)

(
ρ−

yi
j + yi

j−1

2τ

)
C

(1)
Y (yi

j |yi
j−1) =

3τ − (yi
j)

2 − yi
jy

i
j−1 − (yi

j−1)
2 + 3ρτ(yi

j + yi
j−1)− 3ρ2τ2

6τ2

C
(2)
Y (yi

j |yi
j−1) = − 1

6τ2

and

p
(2)
X (xi

j ,∆
i
j |xi

j−1) =
1√

2πσ2∆i
j

exp
(
−

(xi
j − xi

j−1)
2

2σ2∆i
j

+ C̃(0)(xi
j |xi

j−1) + C̃(1)(xi
j |xi

j−1)∆
i
j

+
(∆i

j)
2

2
C̃(2)(xi

j |xi
j−1)

)
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where C̃(k)(xi
j |xi

j−1) = C
(k)
Y (

xi
j

σ |
xi

j−1

σ ), k = 0, 1, 2.

Ornstein-Uhlenbeck process with two random effects: order K = 2 density
expansion coefficients

For model (20) we have:
Yt = γ(Xt) = Xt/σ

then
µY (Yt) = −Yt/(τ + τ i) + ρ,

where ρ = (µ + µi)/σ, and for given values yi
j and yi

j−1 of the Y process, we have

C
(0)
Y (yi

j |yi
j−1) = (yi

j − yi
j−1)

(
ρ−

yi
j + yi

j−1

2(τ + τ i)

)
C

(1)
Y (yi

j |yi
j−1) =

3(τ + τ i)− (yi
j)

2 − yi
jy

i
j−1 − (yi

j−1)
2 + 3ρ(τ + τ i)(yi

j + yi
j−1)− 3ρ2(τ + τ i)2

6(τ + τ i)2

C
(2)
Y (yi

j |yi
j−1) = − 1

6(τ + τ i)2

and

p
(2)
X (xi

j ,∆
i
j |xi

j−1) =
1√

2πσ2∆i
j

exp
{
−

(xi
j − xi

j−1)
2

2σ2∆i
j

+
(xi

j − xi
j−1)

σ

(
ρ−

(xi
j + xi

j−1)
2σ(τ + τ i)

)

+ C̃(1)(xi
j |xi

j−1)∆
i
j +

(∆i
j)

2

2
C̃(2)(xi

j |xi
j−1)

}

where C̃(k)(xi
j |xi

j−1) = C
(k)
Y (

xi
j

σ |
xi

j−1

σ ), k = 1, 2.
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Parameter values
β σ2 σ2

β β̂ σ̂2 σ̂2
β

M = 10, n = 50
-0.2 0.2 0.02 Mean [95% CI] -0.203 [-0.291, -0.112] 0.201 [0.173, 0.222] 0.018 [0.005, 0.038]

Skewness 0.065 -0.301 0.590
Kurtosis 2.780 3.540 3.048

M = 50, n = 10
-0.2 0.2 0.02 Mean [95% CI] -0.198 [-0.245, -0.152] 0.199 [0.171, 0.226] 0.019 [0.012, 0.029]

Skewness 0.070 -0.025 0.394
Kurtosis 2.890 2.630 2.717

M = 10, n = 50
-0.02 0.02 0.02 Mean [95% CI] -0.023 [-0.103, 0.061] 0.020 [0.017, 0.022] 0.018 [0.006, 0.036]

Skewness 0.093 -0.301 0.600
Kurtosis 2.688 3.540 3.057

M = 50, n = 10
-0.02 0.02 0.02 Mean [95% CI] -0.018 [-0.062, 0.022] 0.020 [0.017, 0.023] 0.019 [0.012, 0.028]

Skewness -0.051 -0.025 0.302
Kurtosis 2.909 2.630 2.675

Table 1: Brownian Motion with drift: exact maximum likelihood estimates (and 95% empirical confidence
intervals) from simulations of model (11).

Parameter values
β σ2 σ2

β β(1) (σ(1))2 (σ
(1)
β

)2

M = 10, n = 50
-0.2 0.2 0.02 Mean [95% CI] -0.135 [-0.197, -0.083] 0.200 [0.176, 0.221] 0.008 [0.001, 0.019]

Skewness -0.069 0.161 0.887
Kurtosis 2.761 2.295 4.329

M = 50, n = 10
-0.2 0.2 0.02 Mean [95% CI] -0.198 [-0.247, -0.158] 0.199 [0.171, 0.226] 0.019 [0.011, 0.028]

Skewness -0.209 -0.025 0.066
Kurtosis 2.817 2.630 2.488

M = 10, n = 50

-0.02 0.02 0.02 Mean [95% CI] -0.038 [-0.101, −10−4] 0.020 [0.017, 0.022] 0.014 [0.005, 0.026]
Skewness -0.564 0.072 0.482
Kurtosis 2.580 3.772 2.958

M = 50, n = 10

-0.02 0.02 0.02 Mean [95% CI] -0.020 [-0.061, −10−4] 0.020 [0.017, 0.023] 0.019 [0.012, 0.028]
Skewness -0.715 -0.023 0.164
Kurtosis 2.938 2.632 2.539

Table 2: Geometric Brownian Motion: maximum likelihood estimates (and 95% empirical confidence inter-
vals), from simulations of model (17), solving the integral numerically.
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Parameter values
µ τ σ σ2

µ µ̃ τ̃ σ̃ σ̃2
µ

M = 10, n = 50
1 10 1 1 Mean [95% CI] 0.980 [0.380, 1.576] 10.084 [8.085, 12.082] 0.990 [0.919, 1.047] 0.915 [0.304, 1.935]

Skewness 0.104 0.240 -0.268 0.982
Kurtosis 2.594 3.025 3.694 4.257

M = 50, n = 10

1 10 1 1 Mean [95% CI] 1.019 [0.693, 1.317] 9.943 [8.852, 10.949] 0.947 [0.875, 1.022] 0.991 [0.553, 1.471]
Skewness -0.117 -0.105 -0.047 0.395
Kurtosis 2.802 2.760 2.795 3.423

M = 10, n = 50

2 12 0.1 0.25 Mean [95% CI] 2.021 [1.783, 2.213] 11.996 [11.840, 12.168] 0.099 [0.091, 0.104] 0.240 [0.076, 0.444]
Skewness -0.385 -0.213 -0.395 0.698
Kurtosis 4.896 3.534 3.665 4.456

M = 50, n = 10

2 12 0.1 0.25 Mean [95% CI] 2.018 [1.869, 2.212] 11.995 [11.917, 12.068] 0.094 [0.088, 1.100] 0.251 [0.154, 0.370]
Skewness -0.536 -0.011 -0.065 0.268
Kurtosis 3.570 2.205 2.902 2.871

Table 3: Ornstein-Uhlenbeck process: approximated maximum likelihood estimates (and 95% empirical
confidence intervals) from simulations of model (18), using the exact transition density.

Parameter values
µ τ σ σ2

µ µ(2) τ(2) σ(2) (σ
(2)
µ )2

M = 10, n = 50
1 10 1 1 Mean [95% CI] 0.972 [0.377, 1.562] 10.182 [8.196, 12.174] 1.000 [0.928, 1.057] 0.898 [0.298, 1.898]

Skewness 0.105 0.250 -0.268 0.972
Kurtosis 2.597 3.033 3.680 4.214

M = 50, n = 10

1 10 1 1 Mean [95% CI] 0.866 [0.585, 1.130] 11.820 [10.887, 12.727] 0.994 [0.920, 1.058] 0.711 [0.403, 1.041]
Skewness -0.101 0.052 -0.160 0.309
Kurtosis 2.848 2.736 2.742 3.026

M = 50, n = 50

1 10 1 1 Mean [95% CI] 1.006 [0.691, 1.283] 10.077 [9.221, 10.848] 1.000 [0.970, 1.028] 0.962 [0.556, 1.362]
Skewness -0.084 0.042 -0.112 0.327
Kurtosis 2.972 2.789 2.832 2.963

M = 10, n = 50

2 12 0.1 0.25 Mean [95% CI] 2.017 [1.761, 2.248] 12.058 [11.901, 12.230] 0.106 [0.099, 0.111] 0.239 [0.075, 0.475]
Skewness -0.180 -0.240 -0.222 0.618
Kurtosis 3.729 3.529 3.012 3.039

M = 50, n = 10

2 12 0.1 0.25 Mean [95% CI] 1.813 [1.671, 1.945] 13.366 [13.294, 13.433] 0.375 [0.349, 0.400] 0.197 [0.123, 0.284]
Skewness -0.076 -0.012 -0.031 0.226
Kurtosis 2.904 2.179 2.838 2.626

M = 50, n = 50

2 12 0.1 0.25 Mean [95% CI] 2.010 [1.854, 2.134] 12.057 [11.977, 12.133] 0.106 [0.103, 0.108] 0.245 [0.151, 0.344]
Skewness -0.573 0.008 -0.172 0.042
Kurtosis 3.272 2.361 2.923 2.396

Table 4: Ornstein-Uhlenbeck process: approximated maximum likelihood estimates (and 95% empirical
confidence intervals), from simulations of model (18), using an order K = 2 density expansion.
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Figure 1: Example 1 - Contour plots of the exact log-likelihood profiles (left panels) and the corresponding
approximations by numerical integration (right panels) for fixed σ2

β = 0.02, given observations generated from
model (12) (left) and (17) (right) with (β, σ2, σ2

β) = (−0.2, 0.2, 0.02).
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(e) M = 50, n = 26.
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Figure 2: Example 2 - Contour plots of the profiles of the numerically approximated log-likelihood (19) (left
panels) and the corresponding order K = 2 approximations (right panels) for fixed σ = 1 and σ2

µ = 1, given
observations generated from model (18) with (µ, τ, σ, σ2

µ) = (1, 10, 1, 1).
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